
Scientific Computing for Physicists (PHY1610H)

Ramses van Zon

Winter 2022

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 1 / 33



Course Topics

This course aims at making you a more productive and efficient computational scientist.

It will cover best practices in scientific computing and programming skills, optimization and a bit of
parallel programming.

There are three main themes in this course:
1 Scientific Software Development
2 Numerical Tools for Physical Scientists
3 High Performance Scientific Computing

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 2 / 33



Your Instructor

Who am I?

My name is Ramses van Zon

I am a High-Performance Computing Analysts at SciNet
(SciNet is the supercomputing center at the University of Toronto)

My Ph.D. was in Mathematical Physics, then I postdoc-ed in Chemistical and Theoretical Physics,
including a fair amount of molecular dynamics simulations and other computational projects.

Nowadays, I am involving in training and education and all kinds of other aspects of running and
supporting “high performance computing”.

The TA for this course is Alistair Duff. He’ll be helping with the grading of the assignments. He’s taken
this course in the past, so he knows what you’re going through.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 3 / 33



Your Instructor

Who am I?

My name is Ramses van Zon

I am a High-Performance Computing Analysts at SciNet
(SciNet is the supercomputing center at the University of Toronto)

My Ph.D. was in Mathematical Physics, then I postdoc-ed in Chemistical and Theoretical Physics,
including a fair amount of molecular dynamics simulations and other computational projects.

Nowadays, I am involving in training and education and all kinds of other aspects of running and
supporting “high performance computing”.

The TA for this course is Alistair Duff. He’ll be helping with the grading of the assignments. He’s taken
this course in the past, so he knows what you’re going through.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 3 / 33



What is SciNet?

SciNet is UofT’s supercomputer centre, which
hosts and supports one of Canada’s fastest
supercomputers available to academic researchers.

We also do a lot of other teaching (Bash, Python,
R, Fortran, C++, GPU programming, databases,
machine learning, parallel programming,
visualization, . . . )

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 4 / 33



Course website
https://scinet.courses/1199

Lectures (+Recordings)

Assignments

Forum

. . .

Near-weekly assignments given on Thursdays,
posted on the site.

To be able to submit homework and get course
emails, you need to be able to login to the site
(use your ComputeCanada/SciNet account if you
have one).
If you are going to take the course for (physics) credit, make sure you are sign up for the course in
ACORN.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 5 / 33

https://scinet.courses/1199


Accounts, assignments, . . .
You’ll have access to SciNet’s teaching cluster using a temporary student account, or your
SciNet-enabled Compute Canada account.

ssh USERNAME@teach.scinet.utoronto.ca

If you do not have a Compute Canada account, your login name on the education site is something
that starts with tmp_...

Your USERNAME for the Teach cluster is different from that, it will be of the form
lcl_uotphy1610s...

You should’ve received this USERNAME and it’s password by email.

Initially, you can choose to do the homework assignments on your own computer, provided it has a
unix-like environment with the g++ compiler, make, and git.

Assignments are marked on how they can be compiled and run on the Teach cluster.

Get a CC/SciNet account, if you want to keep working on SciNet after the course.
See www.scinet.utoronto.ca/getting-a-scinet-account

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 6 / 33

https://www.scinet.utoronto.ca/getting-a-scinet-account


Grading scheme
Near-weekly programming assignments posted on the website.

These assignments are due the next week.

Each student should submit their own work.

The average of the assignments will make up your grade.

All sets of homework need to be handed in for a passing grade.

Penalty policy

Homework may be submitted up to 1 week after the due date, at a penalty of 5 points per day, out
of the 100 points per homework.

Deviations of this rule will only be considered, on a case-by-case basis, in exceptional circumstances
(i.e., not “I was busy’ ’).

If, due to exceptional circumstances, an assignment was missed, a make-up assignment on a topic of
the instructor’s choice can be given at the end of the course.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 7 / 33



Grading scheme
Near-weekly programming assignments posted on the website.

These assignments are due the next week.

Each student should submit their own work.

The average of the assignments will make up your grade.

All sets of homework need to be handed in for a passing grade.

Penalty policy

Homework may be submitted up to 1 week after the due date, at a penalty of 5 points per day, out
of the 100 points per homework.

Deviations of this rule will only be considered, on a case-by-case basis, in exceptional circumstances
(i.e., not “I was busy’ ’).

If, due to exceptional circumstances, an assignment was missed, a make-up assignment on a topic of
the instructor’s choice can be given at the end of the course.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 7 / 33



Zoom, lectures, office hours, email, . . .
Zoom lectures

Lectures takes place via Zoom, at least for the next few weeks, following UofT guidelines.

You will need to click on the Zoom link from the course website, then enter the meeting password.

You’ll be put in the waiting room until the host lets you in.

Lectures are recorded and posted on the site afterwards (often towards the end of the day).

Office hours

For the duration of the course, Zoom office hours will be on

Wednesdays from 2:00 pm to 3:00 pm, and
Fridays from 12 noon to 1 pm.

Questions/comments/concerns/etc. about the course?

For questions regarding the course, use the forum on the course website or use the email
courses@scinet.utoronto.ca.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 8 / 33



Course lecture notes
For further reading, you might like the (incomplete) lecture notes of the course two years ago:

https://support.scinet.utoronto.ca/materials/sclecturenotes.html

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 9 / 33

https://support.scinet.utoronto.ca/materials/sclecturenotes.html


Examples of Scientific Computations
Computational Fluid Dynamics Molecular Dynamics

Smooth Particle Hydrodynamics BioInformatics

and many more. . .
Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 10 / 33



Course Outline

1. Software development

C++ intro

Modular programming

Building software with
make

Arrays and object

Version control with git

Unit testing

I/O

2. Numerical tools

Using libraries

Ordinary differential
equations

Partial differental
equations and lin. algebra

Fast Fourier transforms

Random numbers and
Monte Carlo

Molecular Dynamics

3. High-performance computing

Profiling tools

Intro to parallel computing

Batch processing

Shared memory programming

Distributed parallel
programming

GPU programming

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 11 / 33



Section 1

Scientific Software Development

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 12 / 33



Recap of basic programming concepts

We program to have the computer perform a number of similar computations or data manipulations.

A program specifies the actions that the computer should take, as well as (restrictions on) the order
in which they should be taken.

Each action will have a net effect on the program’s “state”.

There is limited set of predefined actions, in terms of which we must express all other actions: that is
programming.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 13 / 33



Programming concepts: Programs and functions

A common pattern of actions to achieve a specific net effect (computation) is an algorithm.

A function, procedure, or subroutine is a specification of actions that can be used as a newly
defined action.

A program is a function that can be executed.

Programs may accept some external data as input and produce data as output.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 14 / 33



Programming concepts: State

Program state is stored in memory.

At least part of the state is made up of the program’s variables.

Variables are values that are assigned to a variable name.

This variable name is associated with a portion of memory that holds the variable’s value.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 15 / 33



Programming concepts: Control structures

Some actions could be done conditionally on the state of the program and external input.

Conditional control structures perform a different actions depending on whether a certain
assertion of the state of the system is true.

Repetition of a set of actions: loops.

Some ideas were taken from:

“A Short Introduction to the Art of Programming’ ’ (E. W. Dijkstra, 1971)

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 16 / 33

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD316.html


Programming concepts: Control structures

Some actions could be done conditionally on the state of the program and external input.

Conditional control structures perform a different actions depending on whether a certain
assertion of the state of the system is true.

Repetition of a set of actions: loops.

Some ideas were taken from:

“A Short Introduction to the Art of Programming’ ’ (E. W. Dijkstra, 1971)

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 16 / 33

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD316.html


Programming concepts: Input/Output

Programs can receive input

Input can take many, many different forms:
I Interactive input from users (keyboard, mouse, . . . )
I Files with parameters
I Files with data
I Input from other programs
I Input from the (inter)net

Programs can (should) produce output

Output can take many different forms too:
I Output to console (text to screen)
I Graphics output
I Output to files
I Output to other programs
I Response to web requests

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 17 / 33



C++

We’ll be using the C++ language in this course.

It’s not the simplest language, but it is a language that can cover all cases we want in this course.

Advantages

High performance

Both low and high level programming

Ubiquitous and standardized

Useful libraries

Modular design

Supports many parallelization techniques

Disadvantages

Labour intensive, error prone

High-level programming up to you

Non-interactive

Things like graphics can be hard

Beware of performance pitfalls

Note: Fortran mostly has these advantages as well, but a choice had to be made.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 18 / 33



C++

We’ll be using the C++ language in this course.

It’s not the simplest language, but it is a language that can cover all cases we want in this course.

Advantages

High performance

Both low and high level programming

Ubiquitous and standardized

Useful libraries

Modular design

Supports many parallelization techniques

Disadvantages

Labour intensive, error prone

High-level programming up to you

Non-interactive

Things like graphics can be hard

Beware of performance pitfalls

Note: Fortran mostly has these advantages as well, but a choice had to be made.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 18 / 33



C++

We’ll be using the C++ language in this course.

It’s not the simplest language, but it is a language that can cover all cases we want in this course.

Advantages

High performance

Both low and high level programming

Ubiquitous and standardized

Useful libraries

Modular design

Supports many parallelization techniques

Disadvantages

Labour intensive, error prone

High-level programming up to you

Non-interactive

Things like graphics can be hard

Beware of performance pitfalls

Note: Fortran mostly has these advantages as well, but a choice had to be made.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 18 / 33



C++

We’ll be using the C++ language in this course.

It’s not the simplest language, but it is a language that can cover all cases we want in this course.

Advantages

High performance

Both low and high level programming

Ubiquitous and standardized

Useful libraries

Modular design

Supports many parallelization techniques

Disadvantages

Labour intensive, error prone

High-level programming up to you

Non-interactive

Things like graphics can be hard

Beware of performance pitfalls

Note: Fortran mostly has these advantages as well, but a choice had to be made.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 18 / 33



Section 2

C++ Introduction

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 19 / 33



C++ Introduction

C++ is compiled languages: their basic ‘actions’ are to be compiled into a set of basic ‘native’
instructions that the processor can execute.

C, upon which C++ builds, was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

For definiteness sake, let’s say we use the C++17 standard.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 20 / 33



C++ Introduction: Basic C++ programming
The following code print “Hello, world!” on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

This might seem like too much code for just that.
There’s some “boilerplate” lines here without
which it does not work.

But the amount of boilplate code does not grow
linear with code, so in actual code, the
signal/noise ratio is better.

To run this, we need to compile the code.
1 We’ll do this on the teach cluster:

$ ssh USERNAME@teach.scinet.utoronto.ca

2 First, avail yourself of a g++ compiler:
$ module load gcc/9

3 Type the code in a text editor, and save it:
$ nano helloworld.cpp

You can use vi or emacs as well.
4 Then we compile this into an executable

$ g++ -std=c++17 -o helloworld helloworld.cpp

5 And finally we run it.
$ ./helloworld
Hello, world!

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 21 / 33



C++ Introduction: Basic C++ programming
The following code print “Hello, world!” on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

This might seem like too much code for just that.
There’s some “boilerplate” lines here without
which it does not work.

But the amount of boilplate code does not grow
linear with code, so in actual code, the
signal/noise ratio is better.

To run this, we need to compile the code.
1 We’ll do this on the teach cluster:

$ ssh USERNAME@teach.scinet.utoronto.ca

2 First, avail yourself of a g++ compiler:
$ module load gcc/9

3 Type the code in a text editor, and save it:
$ nano helloworld.cpp

You can use vi or emacs as well.
4 Then we compile this into an executable

$ g++ -std=c++17 -o helloworld helloworld.cpp

5 And finally we run it.
$ ./helloworld
Hello, world!

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 21 / 33



Super-short intro to the shell
Command prompt

There is a prompt, e.g. "rzon@teach01:~>"
after which you can type in commmands.

Any command you type at the prompt is read by a
‘shell interpreter’. Teach uses the ‘bash’ shell.

Current directory

You are always “in” a current directory/folder in
the file system tree. Your default directory, called
your “home” directory, is where you start.

You can change to a directory with cd DIRNAME

~ is a shorthand for that home directory.

. is a shorthand for the current directory

.. is a shorthand for the parent directory.

Commands are either:

built-in, or

provided by executables in standard locations
(encoded in the so called PATH variable), or

executables of which the path is specified

Examples:
-List the files in the curent directory with ls.
-If the current directory contains an executable
“first”, execute it with the command ./first.
-Connect to a different computer with ssh.

After a command, you can optionally have more
words, called the “arguments” of the command.
What those arguments do, depends
on the command.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 22 / 33



Super-short intro to the shell
Command prompt

There is a prompt, e.g. "rzon@teach01:~>"
after which you can type in commmands.

Any command you type at the prompt is read by a
‘shell interpreter’. Teach uses the ‘bash’ shell.

Current directory

You are always “in” a current directory/folder in
the file system tree. Your default directory, called
your “home” directory, is where you start.

You can change to a directory with cd DIRNAME

~ is a shorthand for that home directory.

. is a shorthand for the current directory

.. is a shorthand for the parent directory.

Commands are either:

built-in, or

provided by executables in standard locations
(encoded in the so called PATH variable), or

executables of which the path is specified

Examples:
-List the files in the curent directory with ls.
-If the current directory contains an executable
“first”, execute it with the command ./first.
-Connect to a different computer with ssh.

After a command, you can optionally have more
words, called the “arguments” of the command.
What those arguments do, depends
on the command.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 22 / 33



Super-short intro to the shell
Command prompt

There is a prompt, e.g. "rzon@teach01:~>"
after which you can type in commmands.

Any command you type at the prompt is read by a
‘shell interpreter’. Teach uses the ‘bash’ shell.

Current directory

You are always “in” a current directory/folder in
the file system tree. Your default directory, called
your “home” directory, is where you start.

You can change to a directory with cd DIRNAME

~ is a shorthand for that home directory.

. is a shorthand for the current directory

.. is a shorthand for the parent directory.

Commands are either:

built-in, or

provided by executables in standard locations
(encoded in the so called PATH variable), or

executables of which the path is specified

Examples:
-List the files in the curent directory with ls.
-If the current directory contains an executable
“first”, execute it with the command ./first.
-Connect to a different computer with ssh.

After a command, you can optionally have more
words, called the “arguments” of the command.
What those arguments do, depends
on the command.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 22 / 33



Super-short intro to the shell
Command prompt

There is a prompt, e.g. "rzon@teach01:~>"
after which you can type in commmands.

Any command you type at the prompt is read by a
‘shell interpreter’. Teach uses the ‘bash’ shell.

Current directory

You are always “in” a current directory/folder in
the file system tree. Your default directory, called
your “home” directory, is where you start.

You can change to a directory with cd DIRNAME

~ is a shorthand for that home directory.

. is a shorthand for the current directory

.. is a shorthand for the parent directory.

Commands are either:

built-in, or

provided by executables in standard locations
(encoded in the so called PATH variable), or

executables of which the path is specified

Examples:
-List the files in the curent directory with ls.
-If the current directory contains an executable
“first”, execute it with the command ./first.
-Connect to a different computer with ssh.

After a command, you can optionally have more
words, called the “arguments” of the command.
What those arguments do, depends
on the command.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 22 / 33



Tips
Getting a terminal shell

For windows, get MobaXterm or use the Linux Subsystem for Windows.
It comes with ssh, so you can connect to teach using the ssh command.
For Mac and Linux, find your terminal application. It should also already come with the ssh command.

Editing code

Text-based editing of (code) files in the shell can be done using different applications.

‘vi’ is ubiquitous but not loved by all.

‘emacs’ is often available. Also not loved by all.

‘nano’ is a beginner friendly editor because all the possible actions are visible on the screen.

Advanced: ‘sshfs’ can be used to make the files on the Teach cluster available on your local machine,
then you can use your favorite local editor.

VS code and other GUI editors? Anything is possible but there are usually slow and error prone to
setup on remote systems.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 23 / 33



Tips
Getting a terminal shell

For windows, get MobaXterm or use the Linux Subsystem for Windows.
It comes with ssh, so you can connect to teach using the ssh command.
For Mac and Linux, find your terminal application. It should also already come with the ssh command.

Editing code

Text-based editing of (code) files in the shell can be done using different applications.

‘vi’ is ubiquitous but not loved by all.

‘emacs’ is often available. Also not loved by all.

‘nano’ is a beginner friendly editor because all the possible actions are visible on the screen.

Advanced: ‘sshfs’ can be used to make the files on the Teach cluster available on your local machine,
then you can use your favorite local editor.

VS code and other GUI editors? Anything is possible but there are usually slow and error prone to
setup on remote systems.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 23 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Back to the C++ example

Here again is the code that print “Hello, world!”
on screen:
// Hello world program in C++

#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Lines starting with // are comments and
ignored by the compiler.

Printing to screen is in a library iostream
which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is function, and is called when the
app is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

"\n" means the next console output should
start on a newline.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 24 / 33



Another C++ Example: Input and variables

#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age;
cin >> age;
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}

This program uses a lot of the std:: objects,
so we import all of that namespace.

(not always a good idea)

int main, starts by defining a variable
named name of type string.
All variables are typed in C++

It reads from cin (console in, i.e., keyboard)
into name

It also reads an age, which is an integer.

And it reports

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 25 / 33



Let’s add a conditional statement

#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
} else {

cout << "You typed: \n"
<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}
}

Depending on the age variable, the program
prints one thing or another, using if/else.

Note that the code for the “one thing” has to
be in a code block, delineated by curly braces.

Similar for “another” thing.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 26 / 33



Return values
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
return 1;

} else {
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

return 0;
}

}

$ g++ -std=c++17 -o main main.cpp
$ echo Alex -1 | ./main
Something is wrong
$ echo $?
1
$ echo Alex 48 | ./main
You typed:
Name: Alex
Age: 48
$ echo $?
0

In addition to errors writing to screen, we can
return a number to the shell to indicate
success or failure.

Returning 0 means success.

In bash, the return value is given in the
variable $?.

By the way, instead of typing the input by
hand, we have bash type it using echo,
whose output got “piped” as input into main.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 27 / 33



Repetition
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
while (age <= 0) {

cout << "Something is wrong!\n";
cout << "Type your age again: ";
cin >> age;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";

}

The idea here is to keep asking numbers for
the age variable until a positive one is given.

The while construct is good for this.

But this can fail if we do not give an integer.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 28 / 33



Repetition
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
while (age <= 0) {

cout << "Something is wrong!\n";
cout << "Type your age again: ";
cin >> age;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";

}

The idea here is to keep asking numbers for
the age variable until a positive one is given.

The while construct is good for this.

But this can fail if we do not give an integer.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 28 / 33



Repetition, fails better
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
int age = -1;
bool haveint = false;
while (not haveint) {

string ageword;
cout << "Type your age: ";
cin >> ageword;
age = stoi(ageword);
haveint = true;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";

}

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 29 / 33



Repetition, catching failures using exceptions
#include <iostream>
#include <string>
using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
int age = -1;
bool waiting_for_valid_int = true;
while (waiting_for_valid_int) {

string ageword;
cout << "Type your age: ";
cin >> ageword;
try {

age = stoi(ageword);
waiting_for_valid_int = false;

} catch (std::invalid_argument& e) {
std::cerr << "Error: invalid input\n";

}
}
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}

Exceptions can be used to catch unexpected
events, like entering a non-number for age.

This goes via the try/catch construct.

If stoi encounters an error, an exception is
“throw”

The exception is caught by the catch clause
(in fact of a specific type).

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 30 / 33



Arrays
#include <iostream>
#include <string>
using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
const int nmax = 10;
int age[nmax] = {0};
int num = nmax;
for (int i = 0; i<nmax && num == nmax; i++) {

bool waiting_for_valid_int = true;
while (waiting_for_valid_int) {

string ageword;
cout << "Type your pet's age (-1 to stop):";
cin >> ageword;
try {

age[i] = stoi(ageword);
waiting_for_valid_int = false;

} catch (std::invalid_argument& e) {
std::cerr << "Error: invalid input\n";

}
}

if (age[i] < 0)
num = i;

}
cout << "You typed: \n"

<< "Name: " << name << "\n";
<< "Ages:";

for (int i = 0; i<num; i++) {
cout << " " << age[i];

}
cout << "\n";

}

Here we want to get several numbers and
store them.
C++ inherited ”automatic arrays” from C.
age is an example of such an array.
Square brackets are used for indexing.
The first element is element [0]
The for loop is suitable for iterating over
such an array.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 31 / 33



Vectors
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
const int nmax = 10;
vector<int> age;
int num = nmax;
for (int i = 0; i<nmax; i++) {

bool waiting_for_valid_int = true;
while (waiting_for_valid_int) {

string ageword;
cout << "Type your kid's age (-1 to stop):";
cin >> ageword;
try {

age.push_back(stoi(ageword));
waiting_for_valid_int = false;

} catch (std::invalid_argument& e) {
std::cerr << "Error: invalid input\n";

}
}

if (age[i] < 0)
break;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Ages:";
for (int a: age)

cout << " " << a;
cout << "\n";

}

Here again we want to get several numbers
and store them.
But we’re using the C++ standard vector.
These have variable sizes.
They also allow range-based for loop.

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 32 / 33



Functions
#include <iostream>
#include <string>
#include <vector>
using namespace std;arra
string getword(const string& prompt) {

string result;
cout << prompt;
cin >> result;
return result;

}
int getint(const string& prompt) {

while (true) {
string ageword = getword(prompt);
try {

return stoi(ageword);
} catch (std::invalid_argument& e) {

std::cerr << "Error: invalid input\n";
}

}
}

int main() {
string name = getword("Type your name: ");
const int nmax = 10;
vector<int> age;
while (true) {
int thisage=getint("Type kid's age (-1 stops):");
if (thisage != -1)

age.push_back(thisage);
if (age.size() == nmax or thisage == -1)

break;
}
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Ages:";

for (int a: age)
cout << " " << a;

cout << "\n";
}

Ramses van Zon Scientific Computing for Physicists (PHY1610H) Winter 2022 33 / 33


	Scientific Software Development
	C++ Introduction

