
Ensemble methods
Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 23, 2021

Alexey Fedoseev Ensemble methods November 23, 2021 1 / 23

Ensemble methods

It is possible to bundle multiple machine-learning, or regression, models together into a single
model. Such techniques are known as “ensemble methods”, and the results as “ensemble
models”. Why would we want to do that?

Some methods are stronger on certain data sets than others

Different algorithms have different weaknesses or strengths than others

By combining the models together we hope to have the different models complement each
other, resulting in an aggregate model which is more accurate than the individual models
themselves

We will focus on classification examples today, but many of these models also have regression
versions, which could be used instead.

Alexey Fedoseev Ensemble methods November 23, 2021 2 / 23

Voting

The simplest of the ensemble methods are

voting, for classification problems

or averaging, for regression problems

In these methods, multiple classification or regression models are trained. These models can be
created by

using different algorithms (kNN, decision tree, etc),

using different splits of the training data set,

both

We then generate the predictions for the test data for all the models.

Alexey Fedoseev Ensemble methods November 23, 2021 3 / 23

Majority voting

The simplest voting method is majority voting.

For each test data point the final result is the result which gets more than half of the votes
from the various models

If no prediction gets more than half of the votes, we say that the ensemble method could
not make a stable prediction

In this case we would usually pick the prediction that gets the most votes. This is
sometimes called “plurality voting”

Another example is weighted voting: the votes from the different models are weighed
unequally. The prediction with the highest weighted value of votes is the winner

For continuous models the predicted values are either simply averaged, or a weighted average is
used.

Alexey Fedoseev Ensemble methods November 23, 2021 4 / 23

Ionosphere data set
Let’s use something new, the Ionosphere data set which consists of radar data. The targets were
free electrons in the ionosphere. “Good” radar returns are those showing evidence of some type
of structure in the ionosphere. “Bad” returns are those that do not; their signals pass through
the ionosphere.

To load this data set we would require the mlbench library:
library(caret)
library(mlbench)
data(Ionosphere)

The second column V2 contains only zeros and we will exclude it from our analysis. We also
rename the first column to avoid error messages:
mydata <- Ionosphere[,-2]
names(mydata)[1] <- "x1"

Alexey Fedoseev Ensemble methods November 23, 2021 5 / 23

Stratified random split

Our data set has around 64% of the “good” values and approximately 36% of the “bad” values.
We would like to preserve this balance in our testing and training data sets. To achieve this, we
will use the function createDataPartition from the caret library.
index <- createDataPartition(mydata$Class, p=0.75, list=FALSE)
trainSet <- mydata[index,]
testSet <- mydata[-index,]

Here we are asking for a 75% split between the training and testing data and that the resulting
index should be a matrix instead of a list.

Let’s create a function to confirm the ratios of “good” and “bad” values in our vector:
calc.perc <- function(vec, val) {

return(sum(vec == val) / length(vec))
}

Alexey Fedoseev Ensemble methods November 23, 2021 6 / 23

Stratified random split

To make things simple we will just display on the values in a row:
cat(calc.perc(mydata$Class, "good"),

calc.perc(trainSet$Class, "good"),
calc.perc(testSet$Class, "good"), "\n")

cat(calc.perc(mydata$Class, "bad"),
calc.perc(trainSet$Class, "bad"),
calc.perc(testSet$Class, "bad"), "\n")

The resulting ratios are very close to each other:
0.6410256 0.6401515 0.6436782
0.3589744 0.3598485 0.3563218

Now we are sure that we do not have underrepresented categories in our both data sets.

Alexey Fedoseev Ensemble methods November 23, 2021 7 / 23

Building models
We will proceed by building several models.

To help build our models we will use 10-fold cross-validation:
fitControl <- trainControl(method = "cv", number = 10, classProbs = TRUE)

model_dt <- train(Class ~ ., data = trainSet,
method = "rpart", trControl = fitControl)

model_lr <- train(Class ~ ., data = trainSet,
method = "glm", trControl = fitControl, preProc = c("center", "scale"))

model_svm <- train(Class ~ ., data = trainSet,
method="svmLinear", trControl=fitControl, preProc=c("center", "scale"))

Notice that in our logistic regression and SVM models we also center and scale our data.

Alexey Fedoseev Ensemble methods November 23, 2021 8 / 23

Building models

We can use our calc.perc function to calculate the accuracy of our predictions on the test set:
pred_dt <- predict(model_dt, testSet)
pred_lr <- predict(model_lr, testSet)
pred_svm <- predict(model_svm, testSet)

cat("DT ", calc.perc(testSet$Class, pred_dt), "\n")
cat("LR ", calc.perc(testSet$Class, pred_lr), "\n")
cat("SVM", calc.perc(testSet$Class, pred_svm),"\n")

The resulting accuracy values are as follows:
DT 0.8850575
LR 0.8850575
SVM 0.8735632

Alexey Fedoseev Ensemble methods November 23, 2021 9 / 23

Forming an ensemble: Averaging
Averaging means taking the average of predictions from models in case of regression problem or
while predicting probabilities for the classification problem.

Since our predictions are either “good” or “bad”, averaging doesn’t make much sense for this
binary classification. Instead, we can average the probabilities of observations:
pred_dt_prob <- predict(model_dt, testSet, type = 'prob')
pred_lr_prob <- predict(model_lr, testSet, type = 'prob')
pred_svm_prob <- predict(model_svm, testSet, type = 'prob')

> head(pred_dt_prob, 5)
bad good

2 0.05988024 0.94011976
5 0.05988024 0.94011976
7 0.05988024 0.94011976
10 0.98181818 0.01818182
17 0.05988024 0.94011976

Alexey Fedoseev Ensemble methods November 23, 2021 10 / 23

Forming an ensemble: Averaging

Now we can calculate the average probability:
pred_avg <- (pred_dt_prob$good + pred_lr_prob$good + pred_svm_prob$good) / 3

Since we are not really interested in probabilities, we will convert them to values:
pred_avg <- as.factor(ifelse(pred_avg > 0.5, "good", "bad"))

We can use our calc.perc function to check the accuracy of our model on the testing data:
> calc.perc(pred_avg, testSet$Class)
[1] 0.8965517

Alexey Fedoseev Ensemble methods November 23, 2021 11 / 23

Comparing results

Method Accuracy

DT 0.8850575
LR 0.8850575
SVM 0.8735632
Averaging 0.8965517

The ensemble method performed slightly better than our individual models.

Alexey Fedoseev Ensemble methods November 23, 2021 12 / 23

Stacking

Stacking involves the building of a meta-model from some base models

We first train a bunch of models on the training data set

These models are then used to predict the targets of the training data

We then create a new data set, consisting of these target predictions from the trained
models, and the correct target from the original training data set

We then train a meta-model on this new data set

By using the predictions of the different models as features, we can let the meta-model
determine when certain models perform well, and when certain models perform poorly

This technique is particularly useful for combining models of different types.

Alexey Fedoseev Ensemble methods November 23, 2021 13 / 23

A note on performance

Not all ensemble models will outperform the models from which they are built.

Sometimes the underperforming base models drag the ensemble model down with them

Sometimes the choice of base models or meta-models is not appropriate for the data set in
question

Certain data sets lend themselves better to different types of base models; the same applies
to ensemble methods

That being said, many of the latest machine learning competition winning models have
been ensemble methods

If you go down this road you will need to experiment with many combinations of base
models and parameters to find the best-performing combination

Alexey Fedoseev Ensemble methods November 23, 2021 14 / 23

Bootstrap aggregating (bagging)

Another ensemble technique is Bootstrap Aggregating (commonly known as “Bagging”).

This is useful for algorithms that have a high variance (decision trees)

We first train a bunch of models of the same type on different versions of the training data
set

These data set versions are generated using bootstrapping (sampling from the training data
with replacement)

These models are then aggregated using voting (classification) or averaging (regression)

The many models can be generated in parallel

This is a very commonly-used technique if you have a base model that you’re confident in.

Alexey Fedoseev Ensemble methods November 23, 2021 15 / 23

Bagging, variations

You may run into a variety of different variations on Bagging:

“Pasting”: samples are drawn from the data set without replacement. This was originally
designed for large data sets

“Bagging”: samples are drawn from the data set with replacement (the data is
bootstrapped)

“Random Subspaces”: Each model is trained on a subset of the features. Also known as
“feature bagging”

“Random Patches”: the combination of Bagging and Random Subspaces, the models are
trained on subsets of both the samples and the features

Both Bagging and Random Patches are worth exploring if you end up going down this road.

Alexey Fedoseev Ensemble methods November 23, 2021 16 / 23

Random Forests

Random Forests are a special variation of bagging, based entirely on decision trees.

As with regular bagging, the data used in training are sampled from the training data, with
replacement

But rather than allow the tree to split on all available features, only a randomly-chosen
subset of the full set of features is available at each split

Random Forests use a subset of features for each split, but the model itself has access to
all features

Each tree is grown as far as possible, or close to it, without pruning

The results of all the trees are then aggregated

This reduces the correlation between individual models and the high variance which is inherent
to decision trees.

Alexey Fedoseev Ensemble methods November 23, 2021 17 / 23

Random Forests, example

We can use the caret package to train a model using random forests:
model_rf <- train(Class ~ ., data = trainSet, method = "rf")

pred_rf <- predict(model_rf, testSet)

The accuracy of the model is slightly better than accuracy of our decision tree model:
> calc.perc(testSet$Class, pred_rf)
[1] 0.908046

Alexey Fedoseev Ensemble methods November 23, 2021 18 / 23

Boosting
Boosting is used to convert weak models into strong models.

In this case, “weak” means a poor classification rate

The skeleton of the algorithm is as follows:
1 Start with a starting model, and the whole data set

2 Train the existing model on the remaining data

3 Remove the data which the model gets correct

4 Create a new model; train it on the remaining data (the data the model gets wrong)

5 Aggregate the new model with the existing models, using weighted majority vote
(classification) or weighted sum (regression)

6 Repeat, starting at step 3

The algorithm actively attempts to correct for mistakes in the existing model

Adaboost (adaptive boosting) was an early example of this type of boosting algorithm.
Alexey Fedoseev Ensemble methods November 23, 2021 19 / 23

Adaboost example

Library adabag provides a convenient way to build models:
library(adabag)
model_ada = boosting(Class ~ ., data = trainSet)
pred_ada <- predict(model_ada, testSet)

> calc.perc(testSet$Class, pred_ada$class)
[1] 0.9195402

Alexey Fedoseev Ensemble methods November 23, 2021 20 / 23

Gradient Boosting
Gradient Boosting (also called Accelerated Gradient Boosting, or Gradient Tree Boosting) is a
generalization of boosting. It’s based on three parts:

A loss function. This depends on the problem type, but must be differentiable
A (weak) model, usually a decision tree
A meta-model, which combines the weak models to minimize the loss function. The loss
function is minimized using gradient descent

Fm(x) = Fm−1(x) + γmhm(x)

where m is the iteration step. The model is built sequentially. At each step the decision tree
hm(x) is chosen to minimize the loss function L, given the current model Fm−1(x)

Fm(x) = Fm−1(x) + argminh

n∑
i

L(yi, Fm−1(xi) + h(xi))

Alexey Fedoseev Ensemble methods November 23, 2021 21 / 23

XGBoost

If you start using Gradient Boosting, you’ll quickly run into XGBoost (“eXtreme Gradient
Boosting”). This is a very popular modelling algorithm.

There are important differences, under the hood, between XGBoost and Gradient Boosting
I XGBoost is fast; it was designed for speed
I XGBoost can be run in parallel, either single- or multi-node
I XGBoost uses less memory
I You need to install the “xgboost” package

Alexey Fedoseev Ensemble methods November 23, 2021 22 / 23

Summary
Some things to remember:

Ensemble models combine a bunch of other base models to (hopefully) create a
more-accurate model than the base models themselves

Voting is the simplest approach, either doing majority voting or averaging of results

Stacking involves creating a meta-model which models the results of the base models,
hopefully learning where certain base models are weak

Bagging creates multiple versions of the same base model, but each trained on different
boostrapped versions of the original data set

Random Forests is a tree-based versions of bagging, where only subsets of features are
available at each split.

Gradient Boosting uses Gradient Descent to iteratively build a better model, by focussing
on what the model gets wrong. XGBoost is a super version.

Alexey Fedoseev Ensemble methods November 23, 2021 23 / 23

	Ensemble methods

