
Introduction to Computational BioStatistics with R:
classification II

Erik Spence

SciNet HPC Consortium

9 November 2021

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 1 / 25

Today’s slides

Today’s slides can be found here. Go to the ”Introduction to Computational BioStatistics with
R” page, under Lectures, ”Classification II”.

https://scinet.courses/1182

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 2 / 25

https://scinet.courses/1182

Today’s class

Today we will visit the following topics:

Logistic regression.

ROC curves.

Support vector machines.

Ask questions!

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 3 / 25

Classification approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ’decisions’ about how to ’split’
the data into uniform groups.

Logistic regression: like linear regression, but now we fit a ”yes/no” function to the data.

Naive Bayes: a type of probabilistic analysis.

kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the
category of a new data point.

Support Vector Machines: essentially a linear model of the data, used for separate groups.

Neural networks: a weird algorithmic approach to using functions to categorize data.

Today we will go over logistic regression and support vector machines.

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 4 / 25

Logistic regression

One way to consider binary classification is to
go back to regression, and fit a linear
regression to an integer 0/1 variable for
classification: over 0.5, True, else False.

This requires a linear separation between the
classes to be effective.

However, naive application of linear regression
can lead to a number of problems, which grow
with the number of dimensions. These are
mostly related to the unbounded nature of the
function.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 5 / 25

Logistic regression, continued
A whole infrastructure exists for ”generalized linear models”, where the function being fit is not

y = β0 + x1β1 + x2β2 + · · · = x · ~β

but rather some power or exponential of x · ~β.

Consider instead fitting, not the probability p, but rather the log of the odds ratio,

µ = ln

(
p

1 − p

)
= x · ~β

We can fit this log-odds equation, and derive

p =
ex·

~β

1 + ex·~β
=

1

1 + e−x·~β

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 6 / 25

Logistic regression, continued more

p =
1

1 + e−x·~β

This approach has a number of very nice
properties:

We have a nice, bounded, well-behaved
function.

We can directly calculate the inferred
probability of category membership.

We’re essentially fitting a Bernoulli
process.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 7 / 25

Logistic regression, continued some more

One has to use somewhat different numerical
algorithms to fit these curves; typical
curve-fitting algorithms deal very poorly with
exponentials.

Techniques like expectation maximization
(EM) or other well-conditioned iterative
methods are often used.

That’s fine; they’re all hidden beneath
whatever logistic or GLM packages you might
want to use.

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 8 / 25

Logistic regression, example

Logistic regression in R is usually
performed using a glm.

You will need to install the
’mlbench’ package to get this
data.

The ’complete.cases’ function
returns a boolean vector,
indicating which rows have
complete data.

As always, we split into training
and testing data.

>

> data(BreastCancer, package = ’mlbench’)

>

> bc <- BreastCancer[complete.cases(BreastCancer),]

>

> ind <- sample(c(TRUE, FALSE), nrow(bc),

+ replace = TRUE, prob = c(0.7, 0.3))

>

> train.d <- bc[ind,]

> test.d <- bc[!ind,]

>

> model <- glm(Class ~ Cl.thickness + Cell.size +

+ Cell.shape, family = ’binomial’, data = train.d)

>

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 9 / 25

Logistic regression, example, continued

Predictions using logistic regression
need some postprocessing.

Use the ”type = ’response’” flag
when using predict with logistic
regression.

The returned values are
probabilities of ’success’. These
must be converted to a
classification.

The ifelse function applies a
conditional to each element, and
returns a the first argument for a
TRUE value, the second for FALSE.

> pred <- predict(model, newdata = test.d,

+ type = ’response’)

>

> new.pred <- ifelse(pred > 0.5,

+ ’malignant’, ’benign’)

>

> conf <- table(test.d$Class, as.factor(new.pred))

>

> conf

benign malignant

benign 122 4

malignant 4 60

>

> sum(diag(conf)) / sum(conf)

[1] 0.9578947

>

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 10 / 25

Evaluating binary classifiers

Binary classification is a common and important enough special case that its confusion matrix
elements have special names, and various quality measures are defined.

Classified Positive (CP) Classified Negative (CN)

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

One can always get exactly one of FN or FP to be zero (for example, just classify everything
positive, then there will never be any false negatives).

But there is usually a tradeoff between false positives and false negatives.

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 11 / 25

Classification thresholds

In most binary classifiers, there’s some
equivalent of a threshold you can set.
This threshold determines when a given
data point moves from one
categorization to the other.

For the case of logistic regression, the
default threshold is 0.5.

Set it lower (allow more true, but
also false, positives).

Set it higher (allow more true, but
also false, negatives).

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Linear
Logistic Prediction
Logistic Function

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 12 / 25

ROC curve

By varying the classification threshold,
from 0 to 1, we can get a collection of
points for the TPR and FPR. Plotting
the two measures on either axis gives a
ROC (Receiver Operating
Characteristic) curve.

The diagonal line represents
random chance.

We want our curve to be as high
above the diagonal as possible. False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 13 / 25

ROC curve, continued

>

> library(ROCR)

>

> ROC.pred <- prediction(pred, test.d$Class)
> ROC.perf <- performance(ROC.pred,

+ measure = ’tpr’,

+ x.measure = ’fpr’)

>

> plot(ROC.perf, type = ’b’, pch = 21,

+ bg = ’blue’)

>

> lines(c(0, 1), c(0, 1), lty = 2)

> False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Note that your curve will look different from
this one, due to randomness.

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 14 / 25

ROC curve, continued more

The quality of a classifier is determined by
the ROC curve’s AUC (area under the
curve).

The worst classifiers will have an AUC
near 0.5.

Good classifiers have an AUC near 1.0.

For the non-binary classification situation,
you create ”one versus all” ROC curves,
with one ROC curve for each category.

> ROC.AUC <- performance(ROC.pred,

+ measure = ’auc’)

> ROC.AUC@y.values

[1] 0.9786706

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 15 / 25

Support Vector Machines

Linear Support Vector Machines (also
called Support Vector Classifiers) determine
a hyperplane which linearly separates the
data set into distinct categories.

The goal of the algorithm is to find the
plane that is the farthest from all the
closest points, in a k dimensional space.

This just ends up being a minimization
problem.

5 6 7 8 9 10

1

0

1

2

3

4

5

6

7

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 16 / 25

Support Vector Machines, example

To demonstrate the use of
Support Vector Machines we
will use the heart disease data
set.

Note that the heart disease
data set has 13 features.
Hence, the hyper-plane which
passes through the data will be
12D.

> heart.data <- read.csv(’link below’, header = F)

> heart.data$V14 <- as.factor(heart.data$V14)
>

> ind <- sample(c(TRUE, FALSE), nrow(heart.data),

+ replace = TRUE, prob = c(0.7, 0.3))

>

> train.d <- heart.data[ind,]

> test.d <- heart.data[!ind,]

>

> library(caret)

>

> svmFit <- train(V14 ~ .,

+ data = train.d, method = ’svmLinear’,

+ preProcess = c(’center’, ’scale’),

+ trControl = trainControl(method = ’cv’, number = 10),

+ tuneLength = 10)

Data source: https://dataaspirant.com/wp-content/uploads/2017/01/heart_tidy.csv

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 17 / 25

https://dataaspirant.com/wp-content/uploads/2017/01/heart_tidy.csv

Support Vector Machines, example, continued

Support Vector Machines take an optional
argument, ’C’ (the penalty parameter).

Large values of C mean that we lack
confidence in the data’s distribution
(noisy data).

Small values mean the opposite.

Default value is 1.0.

> pred <- predict(svmFit, newdata = test.d)

> confusionMatrix(pred, test.d$V14)
Confusion Matrix and Statistics

Reference

Prediction 0 1

0 42 9

1 5 32

Accuracy : 0.8409

95% CI : (0.7475, 0.9102)

No Information Rate : 0.5341

P-Value [Acc > NIR] : 1.289e-09
.
.
.

>

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 18 / 25

Nonlinear Support Vector Machines

Linear Support Vector Machines are all well
and good if your data are linearly
separated. But what can we do if we aren’t
so lucky?

As we can see in the example at right, you
can imagine situations where there are
clearly defined clusters of data, but fitting
linearly is not an option.

6 4 2 0 2 4 6

5

0

5

10

15

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 19 / 25

Nonlinear Support Vector Machines, continued
We have a technique which is quite good at finding hyperplanes in linearly separated data.

If the data are not linearly separated, the solution, obviously (!), is to nonlinearly
transform the data into a space where it is linearly separable.

This typically involves adding dimensions to the data which did not previously exist.

This increases the likelihood of making things linearly separable (Cover’s theorem).

Great! But how do we figure out what transformation to apply to the data?

We don’t. We let the SVM kernel do the work for us.

SVMs use ’kernel functions’ to transform the data into the required form.

There are many types of kernel functions available: linear (which we’ve already been
using), polynomial, radial basis function (RBF), sigmoid, and others.

Once the hyperplane has been determined in the transformed space, the hyperplane is
transformed back into regular data space.

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 20 / 25

Nonlinear SVM, example

Invoking a nonlinear support vector
machine is as simple as specifying
”svmRadial” (for the radial basis function
kernel).

Because the result has so many dimensions
we’re not going to try to plot the actual
plane.

>

> svmNLFit <- train(V14 ~ .,

+ data = train.d, method = ’svmRadial’,

+ preProcess = c(’center’, ’scale’),

+ trControl = trainControl(method = ’cv’,

+ number = 10),

+ tuneLength = 10)

>

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 21 / 25

Nonlinear SVM, example, continued
Cross-validation was used to
tune the (hidden)
hyperparameters. Printing out
the model shows how the
accuracy changed as a
function of the cost (’penalty’)
hyperparameter.

> svmNLFit

Support Vector Machines with Radial Basis Function Kernel

C Accuracy Kappa

0.25 0.8351299 0.6628577

0.50 0.8353680 0.6632606

1.00 0.8256061 0.6434020

2.00 0.8160823 0.6247494

4.00 0.7918182 0.5740152

8.00 0.7825108 0.5573291

16.00 0.7541126 0.5008775

32.00 0.7493506 0.4930295

64.00 0.7579870 0.5100520

128.00 0.7627489 0.5197271

Tuning parameter ’sigma’ was held at a value of 0.04483339

Accuracy was used to select the optimal model...

The final model values were sigma = 0.04483339 and C = 0.5

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 22 / 25

Nonlinear SVM, example, continued more

We can plot the cross-validation accuracy
as a function of the cost parameter.

>

> plot(svmNLFit)

>

Cost

A
cc

ur
ac

y
(C

ro
ss

−
V

al
id

at
io

n)

0.76

0.78

0.80

0.82

0 50 100

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 23 / 25

Nonlinear SVM, example, continued even more

As always, we’re interested in how well
the model does on the test data.

The nonlinear SVM model does slightly
better on the test data than the linear
SVM, though not much.

> NLpred <- predict(svmNLFit, newdata = test.d)

>

> confusionMatrix(NLpred, test.d$V14)
Confusion Matrix and Statistics

Reference

Prediction 0 1

0 43 9

1 4 32

Accuracy : 0.8523

95% CI : (0.7606, 0.9189)

No Information Rate : 0.5341

P-Value [Acc > NIR] : 2.698e-10
.
.
.

>

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 24 / 25

Summary

You’ve now seen four classification algorithms: decision trees, logistic regression, kNN and
SVM. Some things to remember:

Logistic regression:
I not prone to over-fitting.
I can work well with noisy data.
I assumes (requires) there is a single smooth boundary between categories.

SVM:
I a geometric technique,
I builds a hyperplane that separates the data into groups.
I nonlinear SVM projects the data into a higher-dimensional space to build the plane, then

returns the plane to regular space.

There are guidelines you can use, but ultimately experience and experimentation is most
important.

Erik Spence (SciNet HPC Consortium) Classification II 9 November 2021 25 / 25

	Logistic regression
	Example
	Evaluating classifiers
	ROC curve

	SVMs
	Example
	Nonlinear SVMs

