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Today’s slides

Today’s slides can be found here. Go to the ”Introduction to Computational BioStatistics with
R” page, under Lectures, ”Generalized Linear Models”.

https://scinet.courses/1182
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Today’s class

Today we will continue our adventures in actual data analysis.

Verification of models.

Generalized linear models.

As always, ask questions.
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Our linear model
At the end of last class we had created
a linear model to describe the
relationship between Girth and Volume.

>

> model <- lm(Volume ~ Girth,

+ data = trees)

>

> plot(trees$Girth, trees$Volume)
> abline(model)

>

How do we assess the quality of our
model?
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Our linear model, continued
As noted last class, the
summary give important
information:

Information about the
null hypothesis
β1 = ... = βn = 0.

Information about the
individual null
hypotheses: β1 = 0,
β2 = 0, etc.

Remember that the
significance code only tell
you the likelihood that
βi = 0.

> summary(model)

Call:

lm(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
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That’s great, but we’re not done yet

It’s always a good idea to do some further analysis of your model before declaring success.
There are a few things in particular that should always be done.

plot the residuals of the model, in various ways,

examine the statistics of the residuals,

examine the statistics of the model.

What are residuals? Residuals are the distance between the actual value, and the value
predicted by the model, for each data point:

Ri = f(xi)− yi
where f is the model, evaluated at data point xi, and yi is the actual value of the dependent
variable.
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Step 1: plot the residuals

Always plot your residuals. Always.

> par(mfrow = c(1, 3))

>

> plot(model$residuals)

> plot(trees$Volume, model$residuals)

> plot(trees$Girth, model$residuals)
>

Plot your residuals against everything:

index,

against the dependent variables,

against the independent variables.

You should see a snowstorm. There
should be no clumps.
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Step 2: plot the residuals via histogram

Always plot a histogram of your residuals.
Things to look for:

The mean should be zero. If your
residuals are not centered on zero your
model is missing something.

The distribution should be symmetric.
If it’s not, it’s biased (there ’structure’
in the data which has not been
captured by the model).

Distribution should be a Gaussian (an
assumption made as part of the fit).

> par(mfrow = c(1, 1))

> hist(model$residuals, breaks = 11)

Histogram of model$residuals
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Step 3: plot the residuals via Q-Q plot

Plot your residuals on a Q-Q plot.

A Q-Q plot graphically demonstrates
how normally-distributed the residuals
are.

Ideally the residuals should be
normally distributed.

>

> qqnorm(model$residuals)

> qqline(model$residuals)
>
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Anscombe’s Quartet

There’s a strange data set called
Anscombe’s Quartet. This data set is good
for demonstrating the utility of examining
model residuals.

The data set consists of four sets of data
which have essentially identical properties.

> print.stats <- function(x, y) {
+ cat(mean(x), sd(x), mean(y), sd(y),

+ cor(x,y), var(x,y), ’\n’) }
>

> print.stats(anscombe$x1, anscombe$y1)
9 3.316625 7.500909 2.031568 0.8164205 5.501

>

> print.stats(anscombe$x2, anscombe$y2)
9 3.316625 7.500909 2.031657 0.8162365 5.5

>

> print.stats(anscombe$x3, anscombe$y3)
9 3.316625 7.5 2.030424 0.8162867 5.497

>

> print.stats(anscombe$x4, anscombe$y4)
9 3.316625 7.500909 2.030579 0.8165214 5.499

>
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Anscombe’s Quartet, continued
>

> plot.ans <- function(x, y) {
+ plot(x, y, xlim = c(4, 19),

+ ylim = c(3, 13))

+ m <- lm(y ~ x)

+ abline(m)

+ }
>

> par(mfrow = c(2, 2))

>

> plot.ans(anscombe$x1, anscombe$y1)

> plot.ans(anscombe$x2, anscombe$y2)

> plot.ans(anscombe$x3, anscombe$y3)

> plot.ans(anscombe$x4, anscombe$y4)
>
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Anscombe’s Quartet, continued more

> plot.res <- function(x, y) {
+ m <- lm(y ~ x)

+ plot(x, m$residuals, xlim = c(4, 19),

+ ylim = c(-2, 3.5))

+ }
>

> par(mfrow = c(2, 2))

>

> plot.res(anscombe$x1, anscombe$y1)

> plot.res(anscombe$x2, anscombe$y2)

> plot.res(anscombe$x3, anscombe$y3)

> plot.res(anscombe$x4, anscombe$y4)
>

Clearly, for the later three cases, the
residuals are not randomly spread.
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Using R2

R2 = (explained variation)
/ (total variation).

Explains how much of
the variance in the data
can be explained by the
model.

All other variation is
caused by shortcomings
in the model, or noise.

A high R2 value is
necessary, but not
sufficient, for the model
to be satisfactory.

> summary(model)

Call:

lm(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
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Other regression models

There are other types of regression models available:

Logistic (Logit) Regression: used to fit a categorical variable against a continuous
independent variable

Multinomial Logistic Regression: logistic regression where the dependent variable has
multiple outcome categories. If the multiple categories are order this is called Ordinal
Logistic Regression.

Generalized Linear Models: multiple independent variables, different link functions and
noise families.

We will examine Generalized Linear Models today.
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Generalized linear models

The linear model built by ”lm” has some built-in assumptions:

Normally distributed noise,

Uncorrelated noise,

Constant variance of the noise.

There are situations where these assumptions are dramatically violated. To deal with this, let
us examine ”Generalized Linear Models”. These allow

Non-normally distributed noise.

Non-constant variance.

If you find that you have structure in your residuals, it’s possible that you need to use a
generalized linear model.
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Generalized linear models, continued

When should you use a generalized linear model?

You know that your data should come from a non-linear, non-polynomial distribution
(exponential, Poisson, etc).

You don’t know what your distribution should be, and you’ve got structure in your
residuals.

How do generalized linear models work? Let’s start with a regular linear model. Assuming the
vectors of data are (X,Y ), the problem is to find the vector of coefficients β such that

E(Y ) = Xβ

assuming that Y ∼ N(Xβ, σ2),

where E is the expectation value, N(µ, σ2) is the symbol for a normal distribution centred
on µ with a standard deviation of σ.
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Generalized linear models, continued
As an example, for a log-linked Gaussian GLM, we have

log (E(Y )) = Xβ,

which means that E(Y ) = eXβ,

Y ∼ N(eXβ, σ2).

where E is the expectation value, N(µ, σ2) is the symbol for a normal distribution centred
on µ with a standard deviation of σ.

Generalized linear models consist of 3 parts:

A ”link” function. A function which transforms the data such that it becomes linear.

A linear predictor (Xβ).

A probability distribution, which describes the type of noise to be expected in the
dependent variable.
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Generalized linear models, continued more

There are many possible link functions available. The most common ones are

Identity: E(Y ) = Xβ,

Log: log (E(Y )) = Xβ → E(Y ) = eXβ.

Logit: log
(

E(Y )
1−E(Y )

)
= Xβ → E(Y ) = 1

1+e−Xβ

Inverse: 1/E(Y ) = Xβ → E(Y ) = 1/ (Xβ)

The identity link function results in a standard linear regression. By performing a generalized
linear model using this link function, with Gaussian noise, you will get the same result as using
the ”lm” function.
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Generalized linear models, continued even more

Once a link function has been chosen, the type of error in the data must be chosen. The
different error families have different default link functions.

Error family Default link Link inverse Use for:

gaussian identity 1 Normally distributed error
poisson log exp Counts
binomial logit 1/(1 + e−x) Proportions or binary data
gamma inverse 1/x Continuous data with non-constant error

> glm(formula, family = binomial(link = log))
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GLM example

Consider the Cars93 data set.
Plotting the MPG in the city, versus
Weight, suggests a non-linear relationship.

>

> library(MASS)

>

> plot(Cars93$Weight, Cars93$MPG.city)
>
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GLM example, continued

Let’s perform a GLM, using Gaussian noise
and the log link function.

> sorted.weights <- sort(Cars93$Weight)
>

> glm1 <- glm(MPG.city ~ Weight,

+ data = Cars93,

+ family = gaussian(link = "log"))

>

> plot(Cars93$Weight, Cars93$MPG.city)
> lines(sorted.weights,

+ predict(glm1,

+ data.frame(Weight = sorted.weights),

+ type = "response"))

>
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Summary

We’ve started looking at the quality of our linear models. Things to remember:

Plot the residuals! There is important information in there!
I make sure you get a snow storm!
I make sure there is no structure, and no clumps, in your residuals.
I make sure the spread in the data is constant, and not increasing or decreasing.
I make sure the histogram of the residuals is Gaussian.

If the data are not polynomial, or the residuals are not normally distributed, you may need
to use a Generalized Linear Model.

You will likely need to play around with the different noise families and link functions to
find one that best works with your data.

Other types of regression include logistic regression, for fitting categories, and
multinomial regression, for multiple dependent variables.
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