
PHY1610H - Scientific Computing:
Heterogeneous Computing with OpenMP

Ramses van Zon and Marcelo Ponce

SciNet HPC Consortium/Physics Department
University of Toronto

April 2021

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 1 / 25

Lecture 24: Today’s class

Today we will discuss the following topics:

Accelerators: GPGPU and co-processors.

Heterogeneous Computing.

OpenMP.

Other approaches/languages...

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 2 / 25

Hybrid architectures

Multicore nodes linked together with
an (high-speed) interconnect.

Many cores have modest vector
capabilities.

MPI, OpenMP or OpenMP + MPI
can be used in this scenario.

Memory Memory

Memory Memory

Memory Memory

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 3 / 25

Hybrid architectures: accelerators
Multicore nodes linked together with an
(high-speed) interconnect.

Nodes also contain one or more
accelerators, GPGPUs (General Purpose
Graphics Processing Units) or Xeon Phis.

These are specialized, super-threaded
(500-2000+) processors.

Machines with GPU: GPU is multi-core,
but the amount of shared memory is
limited.

Specialized programming languages,
CUDA and OpenCL, are used to program
these devices.

MPI and OpenMP can also be used with
the accelerator.

Memory Memory

Memory Memory

Memory Memory

OpenMP alone can be used within
node, to offload computations to
accelerators/GPUs.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 4 / 25

Standard Parallel Techniques

We have looked at two common ways to parallelize programs in research computing:

OpenMP: for shared memory systems using compiler directives, and

MPI: for distributed sytsems using explicit message passing library.

But there are other options!

Other Parallel Techniques

For accelerators (eg. GPUs, Xeon Phi, FPGAs, etc.): CUDA, OpenACC, OpenCL,
OpenMP (≥ 4)

For alternative shared memory programming: Pthreads, C++11 threads, Cilk++

For programming distributed memory systems more as similarly as if they were shared
memory systems. UPC, MPI3, Coarray (Fortran)

Hybrid techniques: Combining MPI+OpenMP or any of the above.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 5 / 25

Standard Parallel Techniques

We have looked at two common ways to parallelize programs in research computing:

OpenMP: for shared memory systems using compiler directives, and

MPI: for distributed sytsems using explicit message passing library.

But there are other options!

Other Parallel Techniques

For accelerators (eg. GPUs, Xeon Phi, FPGAs, etc.): CUDA, OpenACC, OpenCL,
OpenMP (≥ 4)

For alternative shared memory programming: Pthreads, C++11 threads, Cilk++

For programming distributed memory systems more as similarly as if they were shared
memory systems. UPC, MPI3, Coarray (Fortran)

Hybrid techniques: Combining MPI+OpenMP or any of the above.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 5 / 25

Heterogeneous Computing

What is it?

Use different compute device(s) concurrently in the same computation.

Example: Leverage CPUs for general computing components and use GPU’s for data
parallel / FLOP intensive components.

Pros: Faster and cheaper ($/FLOP/Watt) computation

Cons: More complicated to program

Terminology

GPGPU: General Purpose Grap[hics Processing Unit

HOST: CPU and its memory

DEVICE: Accelerator (GPU) and its memory

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 6 / 25

Accelerators

Systems with accelerators are machines which contain
an ”off-host” accelerator, such as a GPU or Xeon Phi.

These accelerator devices are very fast and good at
massively parallel processing (having 500-2000+ cores).

Complicated to program.

Programming model: CUDA, OpenACC, and OpenCL.

Needs to be combine with at least some ’host’ code:
heterogeous computing.

Target device: Intel Xeon Phi

Target device: GPU

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 7 / 25

Accelerators: CPUs vs GPUs
CPU

general purpose

task parallelism (diverse tasks)

maximize serial performance

large cache

multi-threaded (4-16)

some SIMD (SSE, AVX)

GPU

data parallelism (single task)

maximize throughput

small cache

super-threaded (500-2000+)

“streaming multiprocessors” (SMs)

almost all SIMD

Cache

DRAM

Control ALU

ALU

ALU

ALU

CPU

DRAM

GPU

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 8 / 25

OpenMP Execution Model

Execution starts with single thread (the initial / master thread)

Master thread spawns multiple worker threads as needed, together they form a team
team = master + workers

Parallel region is a block of code executed by all threads in a team simultaneously

(Credit PetaScale Institute 2017)

Number of threads in a team may be dynamically adjusted

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 9 / 25

https://bluewaters.ncsa.illinois.edu/petascale-summer-institute

OpenMP 4.5

(Credit PetaScale Institute 2017)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 10 / 25

https://bluewaters.ncsa.illinois.edu/petascale-summer-institute

Relevant features in OpenMP
Target directives (support for accelerators)

I structured and unstructured target data regions
I Asynchronous execution (nowait) and data dependences (depend)

Tasking directives (support asynchronous programming)
I Load balancing computation
I Orchestrate work between multicores and accelerators
I Multi-level parallelism
I Taskloops

Loop directives for Worksharing (to support multi-cores and accelerators)

SIMD directives (to support SIMD parallelism)
Thread affinity (better control of thread/core bindings)

I Per parallel region (including nested parallelism)

Extended runtime APIs
I Device Memory Routines

Full list of OpenMP compilers is maintained here:
https://www.openmp.org/resources/openmp-compilers-tools/

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 11 / 25

https://www.openmp.org/resources/openmp-compilers-tools/

Modern OpenMP - Execution Mapping

The target construct offloads the
enclosed code to the accelerator: single
thread on a device (GPU)

The teams construct creates a league of
teams: one thread each, concurrent (not
parallel) execution (on SMs)

The parallel construct creates a new team
of threads: parallel execution (by hardware
threads/by sub-”warps”)

The simd construct indicates SIMD
execution is allowed: SIMD execution
(among sub-”warps”)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 12 / 25

OpenMP Target
Device

I An implementation-defined (logical)
execution unit (or accelerator)

Device data environment
I Storage associated with the device

The execution model is host-centric
(or initial device)

I Host creates/destroys data
environment on device(s)

I Host maps data to the device(s)
data environment

I Host offloads OpenMP target
regions to target device(s)

I Host updates the data between the
host and device(s)

I OpenMP target can be offloaded to
an initial device (CPU)

Target construct

Transfer control from the host to the device

Syntax (C/C++)
I #pragma omp target [clause [[,]

clause], ...]
structured-block

Clauses
I device(scalar-integer-expression)
I map(alloc | to | from | tofrom: list)
I if(scalar-expr)

Use target construct to:

Transfer control from the host to the target
device

Map variables to/from the device data env.

Host thread waits until target region completes
(use nowait for asynchronous execution)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 13 / 25

OpenMP Target
Device

I An implementation-defined (logical)
execution unit (or accelerator)

Device data environment
I Storage associated with the device

The execution model is host-centric
(or initial device)

I Host creates/destroys data
environment on device(s)

I Host maps data to the device(s)
data environment

I Host offloads OpenMP target
regions to target device(s)

I Host updates the data between the
host and device(s)

I OpenMP target can be offloaded to
an initial device (CPU)

Target construct

Transfer control from the host to the device

Syntax (C/C++)
I #pragma omp target [clause [[,]

clause], ...]
structured-block

Clauses
I device(scalar-integer-expression)
I map(alloc | to | from | tofrom: list)
I if(scalar-expr)

Use target construct to:

Transfer control from the host to the target
device

Map variables to/from the device data env.

Host thread waits until target region completes
(use nowait for asynchronous execution)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 13 / 25

OpenMP Target
Device

I An implementation-defined (logical)
execution unit (or accelerator)

Device data environment
I Storage associated with the device

The execution model is host-centric
(or initial device)

I Host creates/destroys data
environment on device(s)

I Host maps data to the device(s)
data environment

I Host offloads OpenMP target
regions to target device(s)

I Host updates the data between the
host and device(s)

I OpenMP target can be offloaded to
an initial device (CPU)

Target construct

Transfer control from the host to the device

Syntax (C/C++)
I #pragma omp target [clause [[,]

clause], ...]
structured-block

Clauses
I device(scalar-integer-expression)
I map(alloc | to | from | tofrom: list)
I if(scalar-expr)

Use target construct to:

Transfer control from the host to the target
device

Map variables to/from the device data env.

Host thread waits until target region completes
(use nowait for asynchronous execution)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 13 / 25

OpenMP Target Data Regions

The map clauses determine how an
original (initial device) variable in a data
environment is mapped to a corresponding
variable in a device data environment

I Mapped variable:
F An original variable in a (host) data

environment has a corresponding
variable in a device data environment

Mapped type:
I A type that is amenable for mapped

variables (e.g. to, from, tofrom, etc)
I Bitwise copy-able plus additional

restrictions

map is not necessarily a copy: copy on
multiple cache lines that need to
synchronize

OpenMP Map-types to target data
regions

#pragma omp target data map(to:u)

map(from:uold)

alloc - allocates data on the device
to - allocates data and moves data to
the device
from – allocates data and moves data
from the device (target exit data –
only transfers)
tofrom – allocates data and moves
data to and from the device
delete – deletes the data from the
device and sets the ref.count to 0
release – decrements the reference
count of a variable

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 14 / 25

OpenMP Target Data Regions

The map clauses determine how an
original (initial device) variable in a data
environment is mapped to a corresponding
variable in a device data environment

I Mapped variable:
F An original variable in a (host) data

environment has a corresponding
variable in a device data environment

Mapped type:
I A type that is amenable for mapped

variables (e.g. to, from, tofrom, etc)
I Bitwise copy-able plus additional

restrictions

map is not necessarily a copy: copy on
multiple cache lines that need to
synchronize

OpenMP Map-types to target data
regions

#pragma omp target data map(to:u)

map(from:uold)

alloc - allocates data on the device
to - allocates data and moves data to
the device
from – allocates data and moves data
from the device (target exit data –
only transfers)
tofrom – allocates data and moves
data to and from the device
delete – deletes the data from the
device and sets the ref.count to 0
release – decrements the reference
count of a variable

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 14 / 25

OpenMP - Execution Example, from CPU to device...
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

CPU implementation

#pragma omp parallel for
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

// depending on the compiler/hardware combination
// an optimization may result from the simd construct
#pragma omp parallel for simd
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

target & teams device-offload program

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 15 / 25

OpenMP - Execution Example, from CPU to device...
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

CPU implementation

#pragma omp parallel for
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

// depending on the compiler/hardware combination
// an optimization may result from the simd construct
#pragma omp parallel for simd
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

target & teams device-offload program

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 15 / 25

OpenMP - Execution Example, from CPU to device...
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

target & teams device-offload program

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

in general,

// data transfer
#pragma omp target enter data map(to:a[0:N])
#pragma omp target enter data map(to:b[0:N])

. . .

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

. . .

// data transfer
#pragma omp target update from(a[0:N])

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 16 / 25

OpenMP - Execution Example, from CPU to device...
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

target & teams device-offload program

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

in general,

// data transfer
#pragma omp target enter data map(to:a[0:N])
#pragma omp target enter data map(to:b[0:N])

. . .

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

. . .

// data transfer
#pragma omp target update from(a[0:N])

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 16 / 25

OpenMP - Execution Example: implicit data offload

target offload program

#define N 128
double x[N∗N];
int i, j, k;
for (k=0; k<N∗N; ++k) x[k] = k;

#pragma omp target
// OpenMP implicitly moves data btn

host and device
// "x" mapped to and from
// Scalars are made firstprivate

// Distribute for−loop its btn teams
#pragma omp teams distribute
for (i=0; i<N; ++i) {
// Distribute for−loop its btn threads

#pragma omp parallel for
for (j=0; j<N; ++j) {

x[j+N∗i] ∗= 2.0;
}

}

The target construct offloads the
enclosed code to the accelerator

The teams construct creates a league
of teams

The distribute construct distributes
the outer loop iterations between the
league of teams

The parallel for combined construct
creates a thread team for each team
and distributes the inner loop
iterations to threads

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 17 / 25

OpenMP - Execution Example: Explicit data managament

#define N 100
double ∗p = malloc(N ∗ sizeof (∗p));

#pragma omp parallel for
for (int i=0; i<N; ++i) p[i] = 2.0;

#pragma omp target map(tofrom:p[0:N])
#pragma omp teams distribute parallel for
for (int i=0; i<N; ++i) p[i] ∗= 2.0;

Data management must be explicit
when using pointer variables

Same pointer name used in host and
device environments

Programmer responsibility to keep
the values consistent as needed

Data directives move data between
host and device address spaces

Target update construct

Can be used to specify data transfers between host and devices
#pragma omp target update [clause[[,] clause], ...]

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 18 / 25

OpenMP - Execution Example: Explicit data managament

#define N 100
double ∗p = malloc(N ∗ sizeof (∗p));

#pragma omp parallel for
for (int i=0; i<N; ++i) p[i] = 2.0;

#pragma omp target map(tofrom:p[0:N])
#pragma omp teams distribute parallel for
for (int i=0; i<N; ++i) p[i] ∗= 2.0;

Data management must be explicit
when using pointer variables

Same pointer name used in host and
device environments

Programmer responsibility to keep
the values consistent as needed

Data directives move data between
host and device address spaces

Target update construct

Can be used to specify data transfers between host and devices
#pragma omp target update [clause[[,] clause], ...]

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 18 / 25

Unified Virtual Memory Support (OpenMP ≥ 5.0)

Single address space over CPU and GPU memories

Data migrated between CPU and GPU memories transparently to the application - no
need to explicitly copy data

#pragma omp requires unified shared memory
for (k=0; k < NTIMES; k++)
{

// No data directive needed for pointers a, b, c
#pragma omp target teams distribute parallel for
for (j=0; j<N; j++) {

a[j] = b[j] + scalar ∗c[j];
}

}

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 19 / 25

OpenMP - Use of Unified Memory: OpenMP+CUDA

// combining OpenMP−4.5 and CUDA to use unified memory

cudaMallocManaged ((void ∗∗)&a, sizeof(double) ∗ N);
cudaMallocManaged ((void ∗∗)&b, sizeof(double) ∗ N);
cudaMallocManaged ((void ∗∗)&c, sizeof(double) ∗ N);

#pragma omp target teams distribute \
parallel for is device ptr (a, b, c)
for (j=0; j<N; j++)

a[j] = b[j] + scalar ∗c[j];

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 20 / 25

OpenMP Device Constructs – Core Functionality

Execute code on a target device
omp target

omp declare target

Manage the device data environment
map

omp target data

omp target enter/exit data

omp target update

omp declare target

Parallelism and Workshare for devices
omp teams

omp distribute

Device Runtime Routines
omp get ...

Environemnt Variables
OMP DEFAULT DEVICE

OMP THREAD LIMIT

OMP TARGET OFFLOAD

...

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 21 / 25

OpenMP - OpenACC

OpenMP Platform Model

target/teams
#pragma omp teams distribute parallel

for simd

#define N 128
double x[N∗N];
int i, j, k;

// initialization
for (k=0; k<N∗N; ++k) x[k] = k;

#pragma omp target
#pragma omp teams distribute
for (i=0; i<N; ++i) {

#pragma omp parallel for simd
for (j=0; j<N; ++j) {

x[j+N∗i] ∗= 2.0;
}

}

OpenACC Platform Model

gangs/worker vector
#pragma acc parallel #pragma acc loop

#define N 128
double x[N∗N];
int i, j, k;

// initialization
for (k=0; k<N∗N; ++k) x[k] = k;

#pragma acc parallel
#pragma acc gang worker
for (i=0; i<N; ++i) {

#pragma acc vector
for (j=0; j<N; ++j) {

x[j+N∗i] ∗= 2.0;
}

}

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 22 / 25

OpenACC - OpenMP Conversion

acc parallel omp [target] teams
acc loop independent omp loop
acc loop gang omp distribute order(concurrent)
acc loop worker omp parallel for order(concurrent)
acc loop vector omp simd order(concurrent)
acc parallel loop omp [target] teams loop
acc copyin(), copyout(), copy() omp map(to:), map(from:), map(tofrom:)
acc data, acc end data omp target data, omp end target data
acc enter data,acc exit data omp target enter data, omp target exit data
acc update host(), acc update device() omp target update to(), omp target update from()

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 23 / 25

Summary
Several advantages of directive-based parallelism

Incremental parallel programming
Single source code for sequential and parallel programs

I Use compiler flag to enable or disable
I No major overwrite of the serial code

Works for both CPU and GPU/accelarators
Low learning curve, familiar C/C++/Fortran program environment

I Do not need to worry about lower level hardware details

Simple programming model than lower level programming models
Portable implementation:

I Different architectures, different compilers handle the hardware differences
I Performance strongly dependes on compiler/hardware and constructs, must experiment!

References

”Introduction to Directive Based Programming on GPU”, Helen He (Feb’20)

”OpenMP 5.0/5.1 Tutorial”, EPC (2020)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 24 / 25

https://www.nersc.gov/assets/Uploads/GPU-directives-20200228.pdf
https://ecpannualmeeting.com/assets/overview/sessions/ff2020%20ECP-Tutorial-with-ECP-template.pdf

Course Recap – PHY1610 (2021)

Best Practices in Scientific Computing

Version Control (git)

Modular Programming

Testing

Debugging

File IO: NetCDF

Reusing existing solutions

Using Libraries

RARRAY, STL, FFTW, BLAS,
LAPACK, GSL, BOOST

Performance

Profiling

Performance metrics (speedup,
efficiency, throughput)

Using clusters and schedulers

Shared memory programming
(OpenMP)

Parallel programming (MPI)

Heterogeneous Computing
(OpenMP)

If you haven’t yet, please take some minutes to complete the course evaluation
Thank you!

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Heterogeneous Computing with OpenMP April 2021 25 / 25

	Heterogeneous Architectures
	Programming approaches
	Heterogeneous Computing
	OpenMP
	Course Conclusion

