
PHY1610 - Distributed Parallel Programming with MPI - part 3

Ramses van Zon, Marcelo Ponce

April 6, 2021

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 1 / 20

Section 1

MPI Domain decomposition

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 2 / 20

Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.
Imagine the problem is too large to fit in the memory of one node, so we need to do domain decomposition, and
use MPI.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 3 / 20

Discretizing Derivatives

Partial Differential Equations like the diffusion
equation

∂T

∂t
= D

∂2T

∂x2

are usually numerically solved by finite
differencing the discretized values.

Implicitly or explicitly involves interpolating data
and taking the derivative of the interpolant.

Larger ‘stencils’ → More accuracy.

∂2T

∂x2 ≈
Ti+1 − 2Ti + Ti−1

∆x2

i−2 i−1 i i+2

+1+1 −2

i+1

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 4 / 20

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D

∂T

∂t

∣∣∣
i
≈ T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣
i,j
≈

T
(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 + ∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 5 / 20

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D

∂T

∂t

∣∣∣
i
≈ T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣
i,j
≈

T
(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 + ∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 5 / 20

Stencils and Boundaries

How do you deal with boundaries?
The stencil juts out, you need info on cells beyond those you’re updating.

Common solution: Guard cells
I Pad domain with these guard cells so that stencil works even for the first point in domain.
I Fill guard cells with values such that the required boundary conditions are met.

1D

2 30 1 4 5 6

Number of guard cells ng = 1

Loop from i = ng . . . N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 6 / 20

Stencils and Boundaries

How do you deal with boundaries?
The stencil juts out, you need info on cells beyond those you’re updating.
Common solution: Guard cells

I Pad domain with these guard cells so that stencil works even for the first point in domain.
I Fill guard cells with values such that the required boundary conditions are met.

1D

2 30 1 4 5 6

Number of guard cells ng = 1

Loop from i = ng . . . N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 6 / 20

Stencils and Boundaries

How do you deal with boundaries?
The stencil juts out, you need info on cells beyond those you’re updating.
Common solution: Guard cells

I Pad domain with these guard cells so that stencil works even for the first point in domain.
I Fill guard cells with values such that the required boundary conditions are met.

1D

2 30 1 4 5 6

Number of guard cells ng = 1

Loop from i = ng . . . N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 6 / 20

Stencils and Boundaries

How do you deal with boundaries?
The stencil juts out, you need info on cells beyond those you’re updating.
Common solution: Guard cells

I Pad domain with these guard cells so that stencil works even for the first point in domain.
I Fill guard cells with values such that the required boundary conditions are met.

1D

2 30 1 4 5 6

Number of guard cells ng = 1

Loop from i = ng . . . N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 6 / 20

What does this have to do with MPI?

Guard cells will come in very very handy when parallelizing aplications whose domains are too large to fit in
memory or who need more cores than are available on one node.
For such applications, one often uses Domain decomposition as a strategy to MPI parallelize the computation.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 7 / 20

Domain decomposition
A very common approach to
parallelizing on distributed
memory computers.

Subdivide the domain into
contiguous subdomains.

Give each subdomain to a
different MPI process.

No process contains the full
data!

Maintains locality.

Need mostly local data, ie., only
data at the boundary of each
subdomain will need to be sent
between processes.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 8 / 20

Guard cell exchange

In the domain decomposition, the stencils will jut
out into a neighbouring subdomain.

Much like the boundary condition.

One uses guard cells for domain decomposition
too.

If we managed to fill the guard cell with values
from neighbouring domains, we can treat each
coupled subdomain as an isolated domain with
changing boundary conditions.

6 9 10 1185 7

2 30 1 4 5 6

Could use even/odd trick, or sendrecv.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 9 / 20

1D diffusion with MPI

Before MPI
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}

After MPI
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = localn+1;
for (int t=0;t<maxt;t++) {
MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,

&T[guardright],1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

MPI_Sendrecv(&T[nlocal], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;
if (rank==size-1) T[guardright] = 0.0;
for (int i=1; i<=localn; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}
MPI_Finalize();

Note:
the for-loop over i could also have been a call to
dgemv for a submatrix.
the for-loop over i could also easily be parallelized
with OpenMP
(⇒ hybrid MPI-OpenMP code).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 10 / 20

1D diffusion with MPI

Before MPI
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}

After MPI
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = localn+1;
for (int t=0;t<maxt;t++) {
MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,

&T[guardright],1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

MPI_Sendrecv(&T[nlocal], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;
if (rank==size-1) T[guardright] = 0.0;
for (int i=1; i<=localn; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}
MPI_Finalize();

Note:
the for-loop over i could also have been a call to
dgemv for a submatrix.
the for-loop over i could also easily be parallelized
with OpenMP
(⇒ hybrid MPI-OpenMP code).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 10 / 20

1D diffusion with MPI

Before MPI
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}

After MPI
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = localn+1;
for (int t=0;t<maxt;t++) {
MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,

&T[guardright],1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

MPI_Sendrecv(&T[nlocal], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;
if (rank==size-1) T[guardright] = 0.0;
for (int i=1; i<=localn; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}
MPI_Finalize();

Note:
the for-loop over i could also have been a call to
dgemv for a submatrix.
the for-loop over i could also easily be parallelized
with OpenMP
(⇒ hybrid MPI-OpenMP code).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 10 / 20

2D diffusion with MPI

How to divide the work in 2d?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to send,
left, right, up and down.

Easier to code, similar to 1d, but with contiguous
guard cells to send up and down.
More communication (30 edges).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 11 / 20

2D diffusion with MPI

How to divide the work in 2d?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to send,
left, right, up and down.

Easier to code, similar to 1d, but with contiguous
guard cells to send up and down.
More communication (30 edges).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 11 / 20

2D diffusion with MPI

How to divide the work in 2d?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to send,
left, right, up and down.

Easier to code, similar to 1d, but with contiguous
guard cells to send up and down.
More communication (30 edges).

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 11 / 20

Let’s look at the easiest domain decomposition.

Serial :
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 12 / 20

Let’s look at the easiest domain decomposition.

Serial :
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 12 / 20

Let’s look at the easiest domain decomposition.

Serial :
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 12 / 20

Let’s look at the easiest domain decomposition.

Serial :
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 12 / 20

Section 2

Hybrid MPI+OpenMP

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 13 / 20

Hybrid MPI+OpenMP: Coding

This can be beneficial: pure MPI requires more communications and more memory
As far as coding is involved, that’s easy: use MPI calls and OpenMP directives.
Usually, the MPI part is the trickiest: do that first.

One has to initialize MPI differently, instead of
MPI_Init, use MPI_Init_thread:

int required = SOMETHING;
int provided;

MPI_Init_thread(&argc, &argv, required, &provided);

if (provided < required) exit(1);

Here, SOMETHING can be:
MPI_THREAD_SINGLE
Only one thread will execute.
MPI_THREAD_FUNNELED
If the process is multithreaded, only the thread
that called MPI_Init_thread will make MPI calls.
MPI_THREAD_SERIALIZED
If the process is multithreaded, only one thread
will make MPI library calls at one time.
MPI_THREAD_MULTIPLE
If the process is multithreaded, multiple threads
may call MPI at once with no restrictions.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 14 / 20

Hybrid MPI+OpenMP: Coding

This can be beneficial: pure MPI requires more communications and more memory
As far as coding is involved, that’s easy: use MPI calls and OpenMP directives.
Usually, the MPI part is the trickiest: do that first.

One has to initialize MPI differently, instead of
MPI_Init, use MPI_Init_thread:

int required = SOMETHING;
int provided;

MPI_Init_thread(&argc, &argv, required, &provided);

if (provided < required) exit(1);

Here, SOMETHING can be:
MPI_THREAD_SINGLE
Only one thread will execute.
MPI_THREAD_FUNNELED
If the process is multithreaded, only the thread
that called MPI_Init_thread will make MPI calls.
MPI_THREAD_SERIALIZED
If the process is multithreaded, only one thread
will make MPI library calls at one time.
MPI_THREAD_MULTIPLE
If the process is multithreaded, multiple threads
may call MPI at once with no restrictions.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 14 / 20

Hybrid MPI+OpenMP: Running
You must be specific about the numbers to avoid overloading cores.

In scheduled jobs

The scheduler can help in this respect. E.g. with SLURM, with 16-core nodes, you can say
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=8

module load gcc openmpi

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun ./hybridcode # can use srun instead of mpirun too.
....

to get 6 mpi processes spread over 3 nodes, each running 8 threads.

On login nodes or your own machine

E.g. to get 4 mpi processes on the node each running 3 threads, you’d do
$ module load gcc openmpi
$ export OMP_NUM_THREADS=3
$ mpirun -n 4 ./hybridcode

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 15 / 20

Hybrid MPI+OpenMP: Running
You must be specific about the numbers to avoid overloading cores.

In scheduled jobs

The scheduler can help in this respect. E.g. with SLURM, with 16-core nodes, you can say
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=8

module load gcc openmpi

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun ./hybridcode # can use srun instead of mpirun too.
....

to get 6 mpi processes spread over 3 nodes, each running 8 threads.

On login nodes or your own machine

E.g. to get 4 mpi processes on the node each running 3 threads, you’d do
$ module load gcc openmpi
$ export OMP_NUM_THREADS=3
$ mpirun -n 4 ./hybridcode

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 15 / 20

Section 3

MPI-IO

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 16 / 20

You can use MPI to do IO in parallel

I/O is often the slowest part of a computing system.
Large HPC installations have parallel file systems to help
These have many disks on the back-end, enabling parallel reading and writing
As with many parallel technique, parallelization is not automatic

Solutions:
Could use a separate file for each process.

I But now output depends on #processes.
I Can lead to directory locking.

MPI-IO: Sub-library that enables binary parallel file I/O to single files from all processes.
HDF5 and NetCDF also allow parallel I/O if those libraries were built to support it.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 17 / 20

MPI-IO is similar to ordinary files

MPI_Offset offset = (msgsize*rank);

MPI_File file;
MPI_Status stat;

MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);

MPI_File_seek(file, offset, MPI_SEEK_SET);
MPI_File_write(file, msg, msgsize, MPI_CHAR, &stat);
MPI_File_close(&file);

You have to control the data layout and what process gets to write where in the file!
One usually creates a so-called ‘File view’ to help with that.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 18 / 20

MPI-IO is similar to MPI_Collectives

MPI_Offset offset = (msgsize*rank);

MPI_File file;
MPI_Status stat;

MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);

// Collective Coordinated Write
MPI_File_write_at_all(file, offset, msg, msgsize, MPI_CHAR, &stat);

MPI_File_close(&file);

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 19 / 20

Useful MPI-IO functions:

MPI_File_open
MPI_File_set_view
MPI_File_write
MPI_File_write_at
MPI_File_write_all
MPI_File_write_at_all
MPI_File_read
MPI_File_read_at
MPI_File_read_all
MPI_File_read_at_all
MPI_File_close

Note: after module load gcc openmpi you can access the man pages of these functions.
E.g.
$ module load gcc openmpi
$ man MPI_File_open

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI - part 3 April 6, 2021 20 / 20

	MPI Domain decomposition
	Hybrid MPI+OpenMP
	MPI-IO

