PHY1610 - Distributed Parallel Programming with MPI

Ramses van Zon, Marcelo Ponce

March 30, 2021

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 1/40

Improving scalability

Parallel tasks are run by threads.

All threads live on the same node and share the memory.

Limited to the resources of a single node.

Creation and deletion of threads can cause overhead (see assignment 8!)
Can lead to bugs like race conditions.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 2/40

Issues with shared memory programming

» Parallel tasks are run by threads.

All threads live on the same node and share the memory.

* Limited to the resources of a single node.

» Creation and deletion of threads can cause overhead (see assignment 8!)
Can lead to bugs like race conditions.

Today will look at distributed memory programming

» Parallel tasks are processes.

» Each process has only its own, private memory.

* Processes need not be on the same node.

* You can scale up the size of your system to as many resources as you have.

* Harder to create race condition bugs, but now you get new bugs like dead-lock.

* Must explicitly code in the communication between processes: aka

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 2/40

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 3/40

N |
Lenowo

Lenovo Lenovo

ANNA 4
L}

[| n
VEA 4NN\ 4EA N 4AEEA
[| |] ar
4 NN | W] |
VEN7 NERV NEVE BN EEr

]

Today, right after this lecture, SciNet will start a special event for very large computations that use all or a
substantial part of Niagara's 80,000 cores.

Only a few applications can do so. Most rely on the MPI library. One uses “Co-array Fortran”, which is out of
scope of this course, but which can be implemented using MPI.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 3/40

Section 1

MPI Intro

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 4/40

Message Passing Interface (MPI)

* An open standard library interface for message passing, ratified by the MPl Forum
* Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

e Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

* Version: 3.0 (2012), 3.1 (2015)

* OpenMPI www.open-mpi.org
» SciNet clusters (Niagara or Teach):
module load gcc openmpi
or
module load intel openmpi
Currently these give you OpenMPI version 3.1.1.
* MPICH www.mpich.org
» MPICH 3.x, MVAPICH2 2.x , IntelMPI 2018.x

» module load intel intelmpi

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 5/40

www.open-mpi.org
www.mpich.org

MPI is a Library for Message-Passing

Library: #include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

Not built in to compiler.
int main(int argc, char **argv)
e Function calls that can be made from any {

. int rank, size;
compiler, many languages.

MPI_Init(&argc, &argv);
e Just link to it.
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
o Wrappers: mpicc, mpif90, mpicxx cout << "Hello from task " +
to_string(rank) + " of " +
to_string(size) + "\n";

MPI_Finalize();

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 6/40

MPI is a Library for Message Passing

o Communication/coordination between tasks done
by sending and receiving messages.

e Each message involves a function call from each
of the programs.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 7/40

MPI is a Library for Message Passing
Three basic sets of functionality:
e Pairwise communications via messages;
e Collective operations via messages;

e Efficient routines for getting data from memory
into messages and vice versa.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 8/40

Messages

count of MPI SOMETYPE ® Messages have a sender and a receiver.

tag ® When you are sending a message, you don't need
to specify the sender (it is the current processor).

0 ‘ ® A sent message has to be actively received by the
receiving process

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 9/40

Messages

count of MPI_SOMETYPE o MPI messages are a string of length count all of
some fixed MPI type.

tag

o MPI types exist for characters, integers, floating

i l point numbers, etc.

® An arbitrary non-negative integer tag is also
included — helps keep things straight if lots of
messages are sent.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 10 /40

Size of MPI Library

e Many, many functions (>200). MPI_Init ()
MPI_Comm_size()
MPI_Comm_rank ()

e Not nearly so many concepts. MPI_Ssend ()

MPI_Recv()

e We'll get started with just 10-12, use more as MPI_Finalize()

needed.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 11 /40

Example: Hello World

#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

int main(int argc, char **argv)

{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
cout<< "Hello from task" + to_string(rank) +

" of " + to_string(size) + " world\n";

MPI_Finalize();

}

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 12 /40

Example: Hello World

MPI provides compiler wrappers

& mpicc
® mpicxx
* mpif90

that set all the -I, -L, -1, etc. options properly for the base compiler.

$ git clone /scinet/course/phy1610/mpi

$ cd mpi

$ module load gcc openmpi

$ mpicxx -02 -std=c++14 -o mpi-hello-world mpi-hello-world.cc # or: 'make mpi-hello-world'
$ mpirun -n 16 ./mpi-hello-world

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 13 /40

What mpirun Does

® Launches n processes, assigns each an MPI| rank
and starts the program.

e Usually, the processes run the same executable,
therefore each process runs the exact same
code.

e For multinode runs, has a list of nodes, and logs
in (effectively) to each node, where it launches
the program.

® Most MPI implementations have a more versatile
but non-portable mpirun command as well.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 14 /40

Number of Processes

e Number of processes to use is almost always equal $ mpirun -n 16 ./mpi-hello-world
to the number of processors.

e But not necessarily.

e On a Teach debugjob, what happens when you
run this?

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 15 /40

mpirun runs any program

e mpirun will start its process-launching procedure E.g., try this:

for any program. $ hostname
$ mpirun -n 4 hostname
$ 1s

e Sets variables somehow that mpi programs $ mpirun -n 4 1s

recognize so that they know which process they
are.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 16 / 40

Example: Hello World

$ mpirun -n 4 ./mpi-hello-world
Hello from task 2 of 4 world
Hello from task 1 of 4 world
Hello from task O of 4 world
Hello from task 3 of 4 world

$ mpirun --tag-output -n 4 ./mpi-hello-world
[1,2]<stdout>:Hello from task 2 of 4
[1,3]<stdout>:Hello from task 3 of 4
[1,0]<stdout>:Hello from task O of 4
[1,1]<stdout>:Hello from task 1 of 4

The --tag-output flag is specific for the OpenMPI implementation of MPI.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 17 /40

Section 2

MPI Basics

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 18 /40

MPI Basics

Basic MPI Components

® #include <mpi.h>
MPI library definitions

e MPI_Init(&argc,&argv)
MPI Intialization, must come first

® MPI_Finalize()
Finalizes MPI, must come last

e Formally, MPI routines return an error code. But
in fact, MPI applications by default abort when
there is an error.

Communicator Components

® A communicator is a handle to a group of
processes that can communicate.

e MPI_Comm_rank(MPI_COMM_WORLD,&rank)

e MPI_Comm_size(MPI_COMM_WORLD,&rank)

Ramses van Zon, Marcelo Ponce

#include <iostream>
#include <string>
#include <mpi.h>
using namespace std;

int main(int argc, char **argv)

{

PHY1610 - Distributed Parallel Programming with MPI

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

cout << "Hello from task" + to_string(rank) +

" of " + to_string(size) + " world\n";

MPI_Finalize();

March 30, 2021

19/40

Communicators

® MPI groups processes into communicators.

e Each communicator has some size — number of
tasks.

e Every task has a rank 0..size-1

e Every task in your program belongs to
MPI_COMM_WORLD.

MPI_COMM_WORLD:
size = 4, ranks = 0..3

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 20/40

Communicators

MPI_COMM_WORLD: new_comm:

size=4,ranks=0..3 size=3,ranks=0..2
e One can create one's own
communicators over the same

tasks.

e May break the tasks up into
subgroups.

e May just re-order them for some
reason.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 21/40

MPI Basics - Communicator Components

e MPI_COMM_WORLD:
Global Communicator

® MPI_Comm_rank (MPI_COMM_WORLD, &rank)
Get current tasks rank

e MPI_Comm_size(MPI_COMM_WORLD,&size)

Get communicator size

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 22/40

MPI = Rank and Size

Rank and Size are much more important in MPI
than in OpenMP .

® In OpenMP, the compiler assigns jobs to each
thread; you do not need to know which one is
which (usually).

e In MPI, all proceses run the same code. .

® In MPI, processes determine amongst themselves
which piece of puzzle to work on, based on their
rank, then communicate with appropriate others.

.A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 23/40

MPI = Communication
Explicit Communication between Tasks

® In OpenMP, threads can communicate using the
memory.

e In MPI, a process which needs data of another
process needs to communicate with that process
by passing messages.

MPI_Ssend(...)

MPI_Recv(...)

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 24 /40

MPI: Send & Receive

MPI_Ssend(sendptr, count, MPI_TYPE, destination,tag, Communicator);

MPI_Recv(recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_status)

e sendptr/recvptr: pointer to message

® count: number of elements in message

e MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
e destination/source: rank of sender/reciever

e tag: unique id for message pair

o Communicator: MPI_COMM_WORLD or user created

e status: receiver status (error, source, tag)

Note: MPI has a Fortran and C interface. We can use the C interface in C++ but will have to deal with pointers,
i.e., we'll give arguments likes &(array[0]) or array.data() instead of just array.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 25/40

MPI: Send & Receive

#include <iostream>
#include <string>
#include <mpi.h>

using namespace std;

int main(int argc, char **argv)
{
int rank, size;
int tag = 1;
double msgsent, msgrcvd;
MPI_Status rstatus;

MPI_Init(&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
msgsent = 111.;
msgrcvd = -999.;
if (rank == 0) {
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, 1, tag, MPI_COMM_WORLD) ;
cout << "Sent " + to_string(msgsent) + " from " + to_string(rank) + "\n";
+
if (rank == 1) {
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, O, tag, MPI_COMM_WORLD, &rstatus);
cout << "Received " + to_string(msgrcvd) + " on " + to_string(rank) + "\n";

}

MPI_Finalize();
1 Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021

26 /40

MPI: Send & Receive

$ make firstmessage

$ mpirun -n 2 ./firstmessage
Send 111.000000 from O
Received 111.000000 on 1

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 27 /40

MPI Communication Patterns

Send a message to the right:

Send Send

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 28/40

Specials

MPI_PROC_NULL basically ignores the relevant operation; can lead to cleaner code.

MPI_ANY_SOURCE is a wildcard; matches any source when receiving.

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 29/40

Section 3

Deadlocks

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 30/40

Deadlocks are a classic parallel bug

In this explicit message passing model, it is possible to completely freeze the application.

This can happen when a process is sending a message, but no process is or will ever be ready to receive it.
e This is called deadlock

® To see how that could happen, let's look at an example.

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 31/40

MPI: Send Right, Receive Left

#include <iostream>

#include <string>

#include <mpi.h>

using namespace std;

int main(int argc, char **argv)

{
int rank, size, left, right, tag = 1;
double msgsent, msgrcvd;
MPI_Status rstatus;
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
left = rank - 1;
if (left < 0) left = MPI_PROC_NULL;
right = rank + 1;
if (right >= size) right = MPI_PROC_NULL;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD) ;
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
cout << to_string(rank) + ": Sent " + to_string(msgsent)
+ " and got " + to_string(msgrcvd) + "\n";
MPI_Finalize();
}

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI . March 30, 2021 32/40

MPI: Send Right, Receive Left

make secondmessage
mpirun -n 3 ./secondmessage

Sent
Sent
Sent

4.000000 and got 1.000000
0.000000 and got -999.000000
1.000000 and got 0.000000

mpirun -n 6 ./secondmessage

: Sent
: Sent
: Sent
: Sent
: Sent
: Sent

16.000000 and got 9.000000
25.000000 and got 16.000000
0.000000 and got -999.000000
1.000000 and got 0.000000
4.000000 and got 1.000000
9.000000 and got 4.000000

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI

March 30, 2021

33/40

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

0 I

Send Send

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI

March 30, 2021 34/40

MPI: Send Right, Receive Left with Periodic BCs

left = rank - 1;

if (left < 0) left = size-1;

right = rank + 1;

// Periodic BC

if (right >= size) right =0; // Periodic BC

msgsent = rank*rank;
msgrcvd = -999.;

Ramses van Zon, Marcelo Ponce

PHY1610 - Distributed Parallel Programming with MPI

March 30, 2021

35/40

Deadlock!

A classic parallel bug.

Occurs when a cycle of tasks are waiting for the

others to finish. Sen
® Whenever you see a closed cycle, you likely have

(or risk) a deadlock. 0 I 2

Here, all processes are waiting for the send to . .

complete, but no one is receiving.

Send éend

A

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 36/40

Sends and receives must be paired when sending

How do we fix the deadlock?

Without using new MPI routine, how do we fix the deadlock?

Even-odd solution

0 |
@ @
Send Recv

2 3
@ @
Send Recv

° e

o o

I

Recv Send

e First: evens send, odds receive
o Then: odds send, evens receive

Recv Send

o Will this work with an odd number of processes? How about 27 17

Ramses van Zon, Marcelo Ponce

A

PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 37/40

MPI: Send Right, Recv Left with Periodic BCs - fixed

if ((rank % 2) == 0) {
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD) ;
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
} else {
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, tag, MPI_COMM_WORLD);

$ make fourthmessage

$ mpirun -n 5 ./fourthmessage

1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 38/40

MPI: Sendrecv

MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)

A blocking send and receive built together.

Lets them happen simultaneously.

e Can automatically pair send/recvs.

Why 2 sets of tags/types/counts?

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 39/40

Send Right, Receive Left with Periodic BCs - Sendrecv

MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, tag,
&msgrcvd, 1, MPI_DOUBLE, left, tag, MPI_COMM_WORLD, &rstatus);

$ make fifthmessage

$ mpirun -n 5 ./fifthmessage

1: Sent 1.000000 and got 0.000000
: Sent 4.000000 and got 1.000000
: Sent 9.000000 and got 4.000000
: Sent 16.000000 and got 9.000000
: Sent 0.000000 and got 16.000000

o b w N

Ramses van Zon, Marcelo Ponce PHY1610 - Distributed Parallel Programming with MPI March 30, 2021 40 / 40

	MPI Intro
	MPI Basics
	Deadlocks

