
PHY1610 - High Performance Scientific Computing with OpenMP, part 2

Ramses van Zon, Marcelo Ponce

March 25, 2021

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 1 / 34

Section 1

Reductions

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 2 / 34

Dot Product

Dot product of two vectors

Start from a serial implementation, then will add
OpenMP

Program tells answer, correct answer, time.

n = ~x · ~y =
∑

i

xi yi

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 3 / 34

http://www.scinethpc.ca

Dot Product Code

// ndot_main.cc
#include <iostream>
#include <rarray>
#include "ticktock.h"
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y);
int main()
{

const int n = 20*1000*1000;
rarray<double,1> x(n), y(n);
for (int i=0; i<n; i++)

x[i]=y[i]=i;
double nn = n;
double ans = (nn-1)*nn*(2*nn-1)/6;
TickTock tt;
tt.tick();
double dot = ndot(x,y);
std::cout << "Dot product: " << dot << "\n"

<< "Exact answer: " << ans << "\n";
tt.tock("Took");

}

// serial_ndot.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make serial_ndot
$./serial_ndot
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.1055 sec
$

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 4 / 34

http://www.scinethpc.ca

Dot Product Code

// ndot_main.cc
#include <iostream>
#include <rarray>
#include "ticktock.h"
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y);
int main()
{

const int n = 20*1000*1000;
rarray<double,1> x(n), y(n);
for (int i=0; i<n; i++)

x[i]=y[i]=i;
double nn = n;
double ans = (nn-1)*nn*(2*nn-1)/6;
TickTock tt;
tt.tick();
double dot = ndot(x,y);
std::cout << "Dot product: " << dot << "\n"

<< "Exact answer: " << ans << "\n";
tt.tock("Took");

}

// serial_ndot.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make serial_ndot
$./serial_ndot
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.1055 sec
$

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 4 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 5 / 34

http://www.scinethpc.ca

Our very first race condition!

Can be very subtle, and only appear intermittently.

Your program can have a bug but not display any symptoms for small runs!

Primarily a problem with shared memory.

Classical parallel bug.

Multiple writers to some shared resource.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 6 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2

read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .

reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1

store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2

. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

Race Condition Example

Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 7 / 34

http://www.scinethpc.ca

So it’s wrong, but why is it slower?

You might thing the parallel version should at least still be faster, though it may be wrong. But even that’s not the
case.

Here, multiple cores repeatedly try to read, access and store the same variable in memory.

This means the shared variable that is updated in a register, cannot stay in register: It has to be copied back
to main memory, so the other threads see it correctly.

The other threads then have to re-read the variable.

This write-back would not be necessary if the variable was shared but not written to.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 8 / 34

http://www.scinethpc.ca

Memory hierarchy

Memory is layered: between registers and shared
main memory there are further layers called
caches.

Caches are faster but more expensive and
therefore smaller. They are like private memory
for each core.

Main memory is the slowest part of the memory.

Caches are automatically kept coherent between
cores.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 9 / 34

http://www.scinethpc.ca

Section 2

Fixing the race condition

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 10 / 34

OpenMP critical construct

Our code get it wrong because different threads are updating the tot variable at the same time.

The critical construct:

Defines a critical region.
Only one thread can be operating within this region at a time.
Keeps modifications to shared resources safe.

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 11 / 34

http://www.scinethpc.ca

OpenMP critical construct

Our code get it wrong because different threads are updating the tot variable at the same time.

The critical construct:

Defines a critical region.
Only one thread can be operating within this region at a time.
Keeps modifications to shared resources safe.

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 11 / 34

http://www.scinethpc.ca

Critical Construct Timing

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_critical
$ export OMP_NUM_THREADS=16
$./omp_ndot_critical
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 4.6697 sec

Correct, but 44× slower than serial version!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 12 / 34

http://www.scinethpc.ca

Critical Construct Timing

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_critical
$ export OMP_NUM_THREADS=16
$./omp_ndot_critical
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 4.6697 sec

Correct, but 44× slower than serial version!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 12 / 34

http://www.scinethpc.ca

OpenMP atomic construct

Most hardware has support for atomic instructions (indivisible so cannot get interrupted)
Small subset, but load/add/store usually in it.
Not as general as critical
Much lower overhead.
#pragma omp atomic [read|write|update|capture]

// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(tot,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 13 / 34

http://www.scinethpc.ca

Atomic Construct Timing

// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

double tot=0;
#pragma omp parallel for default(none) shared(tot,n,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_atomic
$ export OMP_NUM_THREADS=16
$./omp_ndot_atomic
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 2.177 sec

About twice faster than critical, but still not great.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 14 / 34

http://www.scinethpc.ca

Atomic Construct Timing

// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

double tot=0;
#pragma omp parallel for default(none) shared(tot,n,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_atomic
$ export OMP_NUM_THREADS=16
$./omp_ndot_atomic
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 2.177 sec

About twice faster than critical, but still not great.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 14 / 34

http://www.scinethpc.ca

Local Sums

The issue we have not resolved is that we’re still updating tot, which causes copies to main memory at every
iteration.

What if we accumulated tot for each core, and sum them up later?

double ndot(const rarray<double,1>& x,
const rarray<double,1>& y)

{
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel default(none) shared(tot,x,y)
{

double localtot=0;
#pragma omp for
for (int i=0; i<n; i++)

localtot += x[i] * y[i];
#pragma omp atomic update
tot += localtot;

}
return tot;

}

$ export OMP_NUM_THREADS=16
$./omp_ndot_local
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01715 sec

Correct answer, 6x faster!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 15 / 34

http://www.scinethpc.ca

Local Sums

The issue we have not resolved is that we’re still updating tot, which causes copies to main memory at every
iteration.

What if we accumulated tot for each core, and sum them up later?

double ndot(const rarray<double,1>& x,
const rarray<double,1>& y)

{
const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel default(none) shared(tot,x,y)
{

double localtot=0;
#pragma omp for
for (int i=0; i<n; i++)

localtot += x[i] * y[i];
#pragma omp atomic update
tot += localtot;

}
return tot;

}

$ export OMP_NUM_THREADS=16
$./omp_ndot_local
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01715 sec

Correct answer, 6x faster!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 15 / 34

http://www.scinethpc.ca

OpenMP Reduction Operations

What we did is quite common, taking a bunch of
data and summing it to one value: reduction

OpenMP supports this using reduction variables.

When declaring a variables as reduction variables,
private copies are made (much as for private
variables), which are combined at the end of a
parallel region through some operation (+, *, min,
max).

omp_ndot_reduction.cc

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 16 / 34

http://www.scinethpc.ca

OpenMP Reduction Operations

What we did is quite common, taking a bunch of
data and summing it to one value: reduction

OpenMP supports this using reduction variables.

When declaring a variables as reduction variables,
private copies are made (much as for private
variables), which are combined at the end of a
parallel region through some operation (+, *, min,
max).

omp_ndot_reduction.cc

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 16 / 34

http://www.scinethpc.ca

OpenMP Reduction Operations

What we did is quite common, taking a bunch of
data and summing it to one value: reduction

OpenMP supports this using reduction variables.

When declaring a variables as reduction variables,
private copies are made (much as for private
variables), which are combined at the end of a
parallel region through some operation (+, *, min,
max).

omp_ndot_reduction.cc

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 16 / 34

http://www.scinethpc.ca

OpenMP Reduction Operations

What we did is quite common, taking a bunch of
data and summing it to one value: reduction

OpenMP supports this using reduction variables.

When declaring a variables as reduction variables,
private copies are made (much as for private
variables), which are combined at the end of a
parallel region through some operation (+, *, min,
max).

omp_ndot_reduction.cc

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 16 / 34

http://www.scinethpc.ca

OpenMP Reduction Operations

What we did is quite common, taking a bunch of
data and summing it to one value: reduction

OpenMP supports this using reduction variables.

When declaring a variables as reduction variables,
private copies are made (much as for private
variables), which are combined at the end of a
parallel region through some operation (+, *, min,
max).

omp_ndot_reduction.cc

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 16 / 34

http://www.scinethpc.ca

Reduction Timing

// omp_ndot_reduction.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp for default(none) shared(x,y) reduction(+:tot)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_reduction
$ export OMP_NUM_THREADS=8
$./omp_ndot_reduction
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01691 sec
$

Correct, same timing as local sums, but simpler
code.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 17 / 34

http://www.scinethpc.ca

Reduction Timing

// omp_ndot_reduction.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp for default(none) shared(x,y) reduction(+:tot)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_reduction
$ export OMP_NUM_THREADS=8
$./omp_ndot_reduction
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01691 sec
$

Correct, same timing as local sums, but simpler
code.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 17 / 34

http://www.scinethpc.ca

Reduction Timing

// omp_ndot_reduction.cc
#include <rarray>
#include <algorithm>
double ndot(const rarray<double,1>& x,

const rarray<double,1>& y)
{

const int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp for default(none) shared(x,y) reduction(+:tot)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make omp_ndot_reduction
$ export OMP_NUM_THREADS=8
$./omp_ndot_reduction
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01691 sec
$

Correct, same timing as local sums, but simpler
code.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 17 / 34

http://www.scinethpc.ca

Parallel pseudo random numbers?

As we saw in the random-number lecture, a stream of pseudo random numbers can be generated by:

having some state, initialized using a seed

advancing a state through an algorithm

computing the random number from that state (adjusted for particular probability distribution)

This means that the nth random number that is generated depends on having the n compute.

It would seem that we cannot parallelize this to generate multiple random numbers at the same time.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 18 / 34

http://www.scinethpc.ca

Solutions to parallel random numbers

Keeping 1 stream
Produce in one thread and distibute to threads.
Skip ahead: works only for some algorithms
Interleave

Low performance, may need to know number of threads and number of draws.

Separate streams per thread
Different seeds.
Different parameters for same kind of rng.
Different kinds of rng.

Why we can do this is that we only care that the streams look random and mutually independent.

Harder to ensure consistency with serial code.

Even more important to have good RNGs.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 19 / 34

http://www.scinethpc.ca

Solutions to parallel random numbers

Keeping 1 stream
Produce in one thread and distibute to threads.
Skip ahead: works only for some algorithms
Interleave

Low performance, may need to know number of threads and number of draws.

Separate streams per thread
Different seeds.
Different parameters for same kind of rng.
Different kinds of rng.

Why we can do this is that we only care that the streams look random and mutually independent.

Harder to ensure consistency with serial code.

Even more important to have good RNGs.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 19 / 34

http://www.scinethpc.ca

Example

// serial computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;

double uniform() {
static mt19937 rng(13);
static uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;

for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

https://www.youtube.com/watch?v=gMlf1ELvRzc&ab_channel=Veritasium

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local mt19937 rng(sdist(srng);
thread_local uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 20 / 34

http://www.scinethpc.ca

Example

// serial computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;

double uniform() {
static mt19937 rng(13);
static uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;

for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

https://www.youtube.com/watch?v=gMlf1ELvRzc&ab_channel=Veritasium

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local mt19937 rng(sdist(srng);
thread_local uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 20 / 34

http://www.scinethpc.ca

Static vs thread_local

static (C)

This keyword has (too?) many different meanings in C++:

Before variables declared inside a function, the variable is initialized upon the first call of the function, and
reused in subsequent calls.

Before variables declared inside a class, the variable is a shared among all instances of the class.

Before functions inside a class, it means these should be called with the class name and can only use static
class variables.

Before variables or functions declared globally inside a file, the variable is only known inside that file.

thread_local (C++11)

Before variables declared inside a function, the variable is initialized per thread upon the first call of the
function. Each thread will see its own copy, and reuse it in subsequent calls. This is analogous to openmp’s
‘private’ for static variables.

Before declarations of global variables, each thread gets an independent copy.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 21 / 34

http://www.scinethpc.ca

Static vs thread_local

static (C)

This keyword has (too?) many different meanings in C++:

Before variables declared inside a function, the variable is initialized upon the first call of the function, and
reused in subsequent calls.

Before variables declared inside a class, the variable is a shared among all instances of the class.

Before functions inside a class, it means these should be called with the class name and can only use static
class variables.

Before variables or functions declared globally inside a file, the variable is only known inside that file.

thread_local (C++11)

Before variables declared inside a function, the variable is initialized per thread upon the first call of the
function. Each thread will see its own copy, and reuse it in subsequent calls. This is analogous to openmp’s
‘private’ for static variables.

Before declarations of global variables, each thread gets an independent copy.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 21 / 34

http://www.scinethpc.ca

Still a race condition! Can you spot it?

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local mt19937 rng(sdist(srng));
thread_local uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local int uninitialized = true;
thread_local mt19937 rng;
thread_local uniform_real_distribution<double> dist(0,1);
if (uninitialized) {

#pragma omp critical
rng.seed(sdist(srng));
uninitialized = false;

}
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 22 / 34

http://www.scinethpc.ca

Still a race condition! Can you spot it?

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local mt19937 rng(sdist(srng));
thread_local uniform_real_distribution<double> dist(0,1);
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

// parallel computation of pi
#include <iostream>
#include <random>
#include <climits>
using namespace std;
mt19937 srng(13);
uniform_int_distribution<unsigned> sdist(0,UINT_MAX);
double uniform() {
thread_local int uninitialized = true;
thread_local mt19937 rng;
thread_local uniform_real_distribution<double> dist(0,1);
if (uninitialized) {

#pragma omp critical
rng.seed(sdist(srng));
uninitialized = false;

}
return dist(rng);

}
int main(int argc, char* argv[]) {
long tries = (argc<2)?10000:atoi(argv[1]);
long count = 0;
#pragma omp parallel for shared(tries) reduction(+:count)
for (long i = 0; i < tries; i++) {
double x = uniform();
double y = uniform();
if (x*x + y*y < 1)
count++;

}
double pi = (4.0*count)/tries;
cout << "Pi is approximately " << pi << endl;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 22 / 34

http://www.scinethpc.ca

Section 3

Load Balancing

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 23 / 34

Load Balancing in OpenMP

So far every iteration of the loop had the same amount of work.

Not always the case.

Sometimes cannot predict beforehand how unbalanced the problem is

OpenMP has work sharing constructs that allow you do statically or dynamically balance the load.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 24 / 34

http://www.scinethpc.ca

Example - Mandelbrot Set

The Mandelbrot set is a boundary in the
(complex) plane between a region from which
point can escape and one from which they can’t.

Based on a mapping in complex plane:

bn+1 = b2
n + a

Mandelbrot set is boundary between diverging
points a (b0 = 0⇒ ‖b∞‖ =∞) and converging
points (‖b∞‖ <∞).

Note: if ‖bn‖ > 2, point diverges.

Calculation:
I iterate for each point a in square, see if ‖bn‖ > 2.
I n<nmax, then blue, else yellow.

On the outside points diverge quickly.

Inside points: lots of work.
Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 25 / 34

http://www.scinethpc.ca

Mandelbrot Code Overview

// iterations for each point
int how_many_iter(std::complex<double> a, int maxiter);
// compute iterations for each point in a rectangle
rarray<int,2> make_mandel_map(double xmin, double xmax, double ymin,

double ymax, int npix, int maxiter)
// display specific stuff
char display_map(const rarray<int,2>&,float,double,double&,double&,double&,double&);
void my_pgctab(float,float,float,float,float,float,int);
// driver routine
int main();

Compile and run:
$ make mandel mandel-parallel
$./mandel

5.06 sec
...
$ export OMP_NUM_THREADS=16
$./mandel-parallel

1.366 sec

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 26 / 34

http://www.scinethpc.ca

Computationally most demanding functions

rarray<int,2> make_mandel_map(double xmin, double xmax,
double ymin, double ymax,
int npix, int maxiter) {

rarray<int,2> mymap(npix,npix);

for (int i=0; i<npix; i++)
for (int j=0; j<npix; j++) {

double x = ((double)i)/((double)npix)*(xmax-xmin)+xmin;
double y = ((double)j)/((double)npix)*(ymax-ymin)+ymin;
std::complex<double> a(x,y);
mymap[i][j] = how_many_iter(a,maxiter);

}
return mymap;

}

int how_many_iter(std::complex<double> a, int maxiter) {
std::complex<double> b = a;
for (int i=0; i<maxiter; i++) {

if (std::norm(b) > 4) return i;
b = b*b + a;

}
return maxiter;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 27 / 34

http://www.scinethpc.ca

Computationally most demanding functions

rarray<int,2> make_mandel_map(double xmin, double xmax,
double ymin, double ymax,
int npix, int maxiter) {

rarray<int,2> mymap(npix,npix);

for (int i=0; i<npix; i++)
for (int j=0; j<npix; j++) {

double x = ((double)i)/((double)npix)*(xmax-xmin)+xmin;
double y = ((double)j)/((double)npix)*(ymax-ymin)+ymin;
std::complex<double> a(x,y);
mymap[i][j] = how_many_iter(a,maxiter);

}
return mymap;

}

int how_many_iter(std::complex<double> a, int maxiter) {
std::complex<double> b = a;
for (int i=0; i<maxiter; i++) {

if (std::norm(b) > 4) return i;
b = b*b + a;

}
return maxiter;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 27 / 34

http://www.scinethpc.ca

Computationally most demanding functions

rarray<int,2> make_mandel_map(double xmin, double xmax,
double ymin, double ymax,
int npix, int maxiter) {

rarray<int,2> mymap(npix,npix);
#pragma omp parallel for default(none) shared(mymap,xmin,xmax,ymin,ymax,npix,maxiter)
for (int i=0; i<npix; i++)

for (int j=0; j<npix; j++) {
double x = ((double)i)/((double)npix)*(xmax-xmin)+xmin;
double y = ((double)j)/((double)npix)*(ymax-ymin)+ymin;
std::complex<double> a(x,y);
mymap[i][j] = how_many_iter(a,maxiter);

}
return mymap;

}

int how_many_iter(std::complex<double> a, int maxiter) {
std::complex<double> b = a;
for (int i=0; i<maxiter; i++) {

if (std::norm(b) > 4) return i;
b = b*b + a;

}
return maxiter;

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 28 / 34

http://www.scinethpc.ca

First Try OpenMP Mandelbrot

Default work sharing breaks N iterations into
N/nthreads chunks and assigns them to threads.

But threads 0, 1, 6 and 7 will be done and sitting
idle while threads 2, 3, 4 and 5 work on the rest

Inefficient use of resources.

Serial 5.060s
Nthreads=16 1.336s
Speedup 3.8x
Efficiency 24%

0 1 2 3 4 5 6 7

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 29 / 34

http://www.scinethpc.ca

Scheduling constructs in OpenMP

Default: each thread gets a big consecutive chunk of the loop. Often better to give each thread many smaller
interleaved chunks.

Can add schedule clause to omp for to change work sharing.

We can decide either at compile-time (static schedule) or run-time (dynamic schedule) how work will be split.

#pragma omp parallel for schedule(static, m) gives m consecutive loop elements to each thread
instead of a big chunk.

With ‘schedule(dynamic, m), each thread will work through m loop elements, then go to the OpenMP
run-time system and ask for more.

Load balancing (possibly) better with dynamic, but larger overhead than
with static.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 30 / 34

http://www.scinethpc.ca

Second Try OpenMP Mandelbrot
#pragma omp parallel for schedule(static,25)

Can change the chunk size different from ∼
N/nthreads
In this case, more columns – work distributed a
bit better.
Now, for instance, thread 7 gets both a big work
chunk and a little one.

Serial 5.060s
Nthreads=16 0.7693s
Speedup 6.6x
Efficiency 41%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 31 / 34

http://www.scinethpc.ca

Third Try: Schedule dynamic
#pragma omp parallel for schedule(dynamic)

Break up into many pieces and hand them to
threads when they are ready.
Dynamic scheduling.
Increases overhead, decreases idling threads.
Can also choose chunk size.

Serial 5.060s
Nthreads=16 0.7686s
Speedup 6.6x
Efficiency 41%

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 32 / 34

http://www.scinethpc.ca

Tuning

schedule(static) or schedule(dynamic) are good starting points.
To get best performance in badly imbalanced problems, may have to play with chunk size; depends on your
problem, hardware, and compiler.

static,1 dynamic,1
0.4347s 0.4121s
11.6x 12.3x
72% 77%

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 33 / 34

http://www.scinethpc.ca

More. . .

There are many more features to OpenMP not discussed here.

Collapsed loops

Tasks

Tasks with dependencies

Nested OpenMP parallelism

Locks

SIMD

Thread affinities

Compute devices (e.g. NVIDIA/AMD graphics cards, Intel Xeon Phi)

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP, part 2 March 25, 2021 34 / 34

http://www.scinethpc.ca

	Reductions
	Fixing the race condition
	Load Balancing

