
PHY1610 - High Performance Scientific Computing with OpenMP

Ramses van Zon, Marcelo Ponce

March 23, 2021

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 1 / 33

Section 1

Shared Memory Programming

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 2 / 33

Shared Memory
One large blob of memory, different computing
cores acting on it. All ‘see’ the same data.

Any coordination done through memory.

Could use message passing, but no need.

Each code is assigned a thread of execution of a
single program that acts on the data.

Core 3 Core 1

Core 7Core 5

Core 6

Core 2

Core 0Core 4

MEMORY

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 3 / 33

OpenMP
For on-node, performant, portable parallel code

E.g. multi-core, shared memory systems.

Add parallelism to functioning serial code.

https://openmp.org

Compiler, run-time environment does a lot of
work for us (divides up work)

But we have to tell it how to use variables, where
to run in parallel, . . .

Works by adding compiler directives to C, C++,
or Fortran code

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 4 / 33

OpenMP basic operations
In code

In C++, you add lines starting with #pragma omp

This parallelizes the subsequent code block.

When compiling
To turn on OpenMP support in g++, add the -fopenmp flag to the compilation and link commands.

When running
The environment variable OMP_NUM_THREADS determines how many threads will be started in an OpenMP
parallel block.

$ cd $SCRATCH
$ git clone /scinet/course/phy1610/omp
$ cd omp
$ source setup
$ make omp-hello-world

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 5 / 33

OpenMP example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

}
}

$ g++ -std=c++14 -O2 -o omp-hello-world omp-hello-world.cc -fopenmp
$ #(or make omp-hello-world)
$ export OMP_NUM_THREADS=1
$./omp-hello-world

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 6 / 33

OpenMP example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

}
}

$ g++ -std=c++14 -O2 -o omp-hello-world omp-hello-world.cc -fopenmp
$ #(or make omp-hello-world)
$ export OMP_NUM_THREADS=1
$./omp-hello-world

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 6 / 33

Output from OpenMP hello world

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 7 / 33

Output from OpenMP hello world

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 7 / 33

What happened precisely?

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

#include <iostream>
#include <omp.h>
#include <string>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
+std::to_string(omp_get_thread_num())+"!\n";

}
}

Threads were launched.

Each prints ‘Hello, world . . . ’

In seemingly random order.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 8 / 33

What happened precisely?

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

#include <iostream>
#include <omp.h>
#include <string>
int main() {

std::cout << "At start of program\n";
#pragma omp parallel
{

std::cout << "Hello world from thread "
+std::to_string(omp_get_thread_num())+"!\n";

}
}

Threads were launched.

Each prints ‘Hello, world . . . ’

In seemingly random order.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 8 / 33

Running OpenMP batch jobs on the Teach cluster

If we all run our parallel codes on the Teach login node (“teach01”), we’ll quickly slow down the node, as all cores
because oversubscribed.

Scaling experiments (i.e., seeing how the runtime varies with the number of cores) are unreliable on the shared
login node.

The Teach cluster has 40 other nodes, each with 16 cores, called the compute nodes.

For short interactive test, you can get access to compute nodes with the debugjob command, e.g., for 4 cores, do
debugjob -n 4

For larger runs or test, you must submit a jobscript to the scheduler.
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --cpus-per-task=16
#SBATCH --time=1:00:00
#SBATCH --job-name openmp_job
#SBATCH --output=openmp_output_%j.txt
#SBATCH --mail-type=FAIL
module load gcc
OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./openmp_example

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 9 / 33

OpenMP: Language extension + a library

#pragma omp give the language extensions

#include <omp.h> give access to library functions such as

int omp_get_num_threads(); // number of threads currently running

int omp_get_thread_num(); // index of the current threads (starts at 0)

void omp_set_num_threads(int n); // number of threads to be used at the next parallel section

int omp_get_num_procs(); // get maximum number of processors

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 10 / 33

New example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

std::cout << "There were "
+ std::to_string(omp_get_num_threads()) + " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 11 / 33

New example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

std::cout << "There were "
+ std::to_string(omp_get_num_threads()) + " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 11 / 33

New example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

std::cout << "There were "
+ std::to_string(omp_get_num_threads()) + " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 11 / 33

New example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

std::cout << "There were "
+ std::to_string(omp_get_num_threads()) + " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 11 / 33

New example

#include <iostream>
#include <omp.h>
#include <string>
int main() {
std::cout << "At start of program\n";
#pragma omp parallel
std::cout << "Hello world from thread "
+ std::to_string(omp_get_thread_num()) + "!\n";

std::cout << "There were "
+ std::to_string(omp_get_num_threads()) + " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 11 / 33

Variables to the rescue!

omp_get_num_threads only returns the number of threads in a parallel region inside said region.

Let’s try to store the result of omp_get_num_threads to a variable then.

#include <iostream>
#include <omp.h>
int main() {

int t, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(t)
{

t = omp_get_thread_num();
if (t == 0)
nthreads = omp_get_num_threads();

}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

What are these extra clauses?
I shared: read/write access to the variable for each thread
I private: separate instance of the variable for each thread

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 12 / 33

Variables to the rescue!

omp_get_num_threads only returns the number of threads in a parallel region inside said region.

Let’s try to store the result of omp_get_num_threads to a variable then.
#include <iostream>
#include <omp.h>
int main() {
int t, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(t)
{
t = omp_get_thread_num();
if (t == 0)
nthreads = omp_get_num_threads();

}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

What are these extra clauses?
I shared: read/write access to the variable for each thread
I private: separate instance of the variable for each thread

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 12 / 33

Variables to the rescue!

omp_get_num_threads only returns the number of threads in a parallel region inside said region.

Let’s try to store the result of omp_get_num_threads to a variable then.
#include <iostream>
#include <omp.h>
int main() {
int t, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(t)
{
t = omp_get_thread_num();
if (t == 0)
nthreads = omp_get_num_threads();

}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

What are these extra clauses?
I shared: read/write access to the variable for each thread
I private: separate instance of the variable for each thread

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 12 / 33

Shared and Private Variables

Shared Variables
A variable designated as shared can be accessed by all threads.
For reading variable values, this is very convenient.
For assigning to variables, this introduces potential race conditions.

Private Variables

If a variable is designated as private, each thread gets its own separate version of the variable.

Different threads cannot see other threads’ versions.

Thread-private versions do not have the value of the variable outside the parallel loop.

The thread-private versions cease to exists after the parallel region.

If a variable is not designated as either shared or private, the compiler chooses.
That may seem like a nice feature, but try not to rely on this!
With default(none), compilation fails if undesignated variables are used in parallel regions.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 13 / 33

Shared and Private Variables

Shared Variables
A variable designated as shared can be accessed by all threads.
For reading variable values, this is very convenient.
For assigning to variables, this introduces potential race conditions.

Private Variables

If a variable is designated as private, each thread gets its own separate version of the variable.

Different threads cannot see other threads’ versions.

Thread-private versions do not have the value of the variable outside the parallel loop.

The thread-private versions cease to exists after the parallel region.

If a variable is not designated as either shared or private, the compiler chooses.
That may seem like a nice feature, but try not to rely on this!
With default(none), compilation fails if undesignated variables are used in parallel regions.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 13 / 33

Shared and Private Variables

Shared Variables
A variable designated as shared can be accessed by all threads.
For reading variable values, this is very convenient.
For assigning to variables, this introduces potential race conditions.

Private Variables

If a variable is designated as private, each thread gets its own separate version of the variable.

Different threads cannot see other threads’ versions.

Thread-private versions do not have the value of the variable outside the parallel loop.

The thread-private versions cease to exists after the parallel region.

If a variable is not designated as either shared or private, the compiler chooses.
That may seem like a nice feature, but try not to rely on this!
With default(none), compilation fails if undesignated variables are used in parallel regions.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 13 / 33

What happened?

Program runs, lauches threads.
Each thread gets copy of t.
Only thread 0 writes to nthreads.

$ make omp-num-threads3
$ export OMP_NUM_THREADS=3
$./omp-num-threads3
There were 3 threads.

#include <iostream>
#include <omp.h>
int main() {

int nthreads, t;
#pragma omp parallel \

default(none) \
shared(nthreads) \
private(t)

{
t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 14 / 33

What happened?

Program runs, lauches threads.
Each thread gets copy of t.
Only thread 0 writes to nthreads.

$ make omp-num-threads3
$ export OMP_NUM_THREADS=3
$./omp-num-threads3
There were 3 threads.

Tip: Declare private variables, such as t, as local
variables.

#include <iostream>
#include <omp.h>
int main() {

int nthreads, t;
#pragma omp parallel \

default(none) \
shared(nthreads) \
private(t)

{
t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 15 / 33

What happened?

Program runs, lauches threads.
Each thread gets copy of t.
Only thread 0 writes to nthreads.

$ make omp-num-threads3
$ export OMP_NUM_THREADS=3
$./omp-num-threads3
There were 3 threads.

Tip: Declare private variables, such as t, as local
variables.

#include <iostream>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel \

default(none) \
shared(nthreads)

{
int t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout<<"There were "<<nthreads<<" threads.\n";

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 16 / 33

Single Execution

We do not care which thread sets nthreads.

Might as well be the first thread that gets to it.

OpenMP has a construct for this:
#include <iostream>
#include <omp.h>
int main()
{

int nthreads;
#pragma omp parallel default(none) shared(nthreads)
#pragma omp single
nthreads = omp_get_num_threads();
std::cout << "There were " << nthreads << " threads.\n";

}

$ make omp-num-threads5
$ export OMP_NUM_THREADS=3
$./omp-num-threads5
There were 3 threads.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 17 / 33

Section 2

Loops

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 18 / 33

Loops in OpenMP

Lots of loops in scientific code. Let’s add a senseless loop:
#include <iostream>
#include <omp.h>
#include <string>
int main() {
int i, t;
#pragma omp parallel default(none) private(i,t)\

shared(std::cout)
{
t = omp_get_thread_num();
for (i=0; i<16; i++)
std::cout << "Thread " + std::to_string(t)

+ " gets i=" + std::to_string(i) + "\n";
}
}

What would you expect this to do with e.g. 2 threads?

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 19 / 33

This is what it does:
$ make omp-loop1
$ export OMP_NUM_THREADS=2
$./omp-loop1
Thread 0 gets i=0
Thread 0 gets i=1
Thread 0 gets i=2
Thread 1 gets i=0
Thread 0 gets i=3
Thread 1 gets i=1
Thread 0 gets i=4
Thread 1 gets i=2
Thread 0 gets i=5
Thread 1 gets i=3
Thread 0 gets i=6
Thread 1 gets i=4
Thread 0 gets i=7
Thread 1 gets i=5
Thread 0 gets i=8
Thread 1 gets i=6
Thread 0 gets i=9
Thread 1 gets i=7
Thread 0 gets i=10
Thread 1 gets i=8
Thread 0 gets i=11
Thread 1 gets i=9
Thread 0 gets i=12
Thread 1 gets i=10
Thread 0 gets i=13
Thread 1 gets i=11
Thread 0 gets i=14
Thread 1 gets i=12
Thread 0 gets i=15
Thread 1 gets i=13
Thread 1 gets i=14
Thread 1 gets i=15

Every thread executes all 16 cases!

Probably not what we want.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 20 / 33

This is what it does:
$ make omp-loop1
$ export OMP_NUM_THREADS=2
$./omp-loop1
Thread 0 gets i=0
Thread 0 gets i=1
Thread 0 gets i=2
Thread 1 gets i=0
Thread 0 gets i=3
Thread 1 gets i=1
Thread 0 gets i=4
Thread 1 gets i=2
Thread 0 gets i=5
Thread 1 gets i=3
Thread 0 gets i=6
Thread 1 gets i=4
Thread 0 gets i=7
Thread 1 gets i=5
Thread 0 gets i=8
Thread 1 gets i=6
Thread 0 gets i=9
Thread 1 gets i=7
Thread 0 gets i=10
Thread 1 gets i=8
Thread 0 gets i=11
Thread 1 gets i=9
Thread 0 gets i=12
Thread 1 gets i=10
Thread 0 gets i=13
Thread 1 gets i=11
Thread 0 gets i=14
Thread 1 gets i=12
Thread 0 gets i=15
Thread 1 gets i=13
Thread 1 gets i=14
Thread 1 gets i=15

Every thread executes all 16 cases!

Probably not what we want.

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 20 / 33

Worksharing in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to divide a problem into pieces that threads works on.

OpenMP has a worksharing construct: omp for.
#include <iostream>
#include <omp.h>
#include <string>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{
int t = omp_get_thread_num();
#pragma omp for
for (int i=0; i<16; i++)

std::cout << "Thread " + std::to_string(t)
+ " gets i=" + std::to_string(i) + "\n";

}
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 21 / 33

Worksharing in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to divide a problem into pieces that threads works on.

OpenMP has a worksharing construct: omp for.

#include <iostream>
#include <omp.h>
#include <string>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{
int t = omp_get_thread_num();
#pragma omp for
for (int i=0; i<16; i++)

std::cout << "Thread " + std::to_string(t)
+ " gets i=" + std::to_string(i) + "\n";

}
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 21 / 33

Worksharing in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to divide a problem into pieces that threads works on.

OpenMP has a worksharing construct: omp for.
#include <iostream>
#include <omp.h>
#include <string>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{
int t = omp_get_thread_num();
#pragma omp for
for (int i=0; i<16; i++)
std::cout << "Thread " + std::to_string(t)

+ " gets i=" + std::to_string(i) + "\n";
}

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 21 / 33

Worksharing constructs in OpenMP

omp for construct breaks up the iterations by
thread.

If doesn’t divide evenly, does the best it can.

Allows easy breaking up of work!

Code need not know how many threads there are;
OpenMP does the work division for you.

$ make omp_loop2
$ export OMP_NUM_THREADS=2
$./omp_loop2
Thread 0 gets i=0
Thread 0 gets i=1
Thread 0 gets i=2
Thread 1 gets i=8
Thread 0 gets i=3
Thread 1 gets i=9
Thread 0 gets i=4
Thread 0 gets i=5
Thread 0 gets i=6
Thread 0 gets i=7
Thread 1 gets i=10
Thread 1 gets i=11
Thread 1 gets i=12
Thread 1 gets i=13
Thread 1 gets i=14
Thread 1 gets i=15

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 22 / 33

Less trivial example: DAXPY

#include <rarray>
#include "ticktock.h"

void init(rarray<double,1>& x, rarray<double,1>& y);

void mydaxpy(double a, const rarray<double,1>& x,
const rarray<double,1>& y, rarray<double,1>& z);

int main()
{

int n = 10*1000*1000;
rarray<double,1> x(n), y(n), z(n);
double a = 5./3.;
TickTock tt;
tt.tick();
init(x,y);
mydaxpy(a,x,y,z);
tt.tock("Tock registers");

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 23 / 33

DAXPY - Function definitions

#include <algorithm>

// Initialize arrays x and y with iˆ2 and iˆ2-1, respectively
void init(rarray<double,1>& x, rarray<double,1>& y) {

int n = std::min(x.size(), y.size());
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}
}
// Add a*x+y to z. x, y, and z are arrays and a is a scalar.
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

How would you OpenMP-parallelize this?

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 24 / 33

Parallelizing the loops

Things to consider when parallelizing:

Where is the concurrency?

I.e. what loops have independent iterations, so they may be done in parallel?

If we divide the work over threads, which variables do the threads need to know about?

Which ones are shared, which ones are to be private?

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 25 / 33

Parallel DAXPY

void init(rarray<double,1>& x, rarray<double,1>& y) {
int n = std::min(x.size(), y.size());
#pragma omp parallel default(none) shared(x,y,n)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}
}

}
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(x,y,a,z,n)
{

#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 26 / 33

For your convenience

Constants are forced to be automatically shared

#pragma omp parallel and #pragma omp for may be combined to

#pragma omp parallel for

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 27 / 33

Parallel DAXPY, simplifications

void init(rarray<double,1>& x, rarray<double,1>& y) {
int n = std::min(x.size(), y.size());
#pragma omp parallel default(none) shared(n,x,y)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}
}

}
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z);
{

int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(n,x,y,a,z)
{

#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 28 / 33

Parallel DAXPY, simplifications

void init(rarray<double,1>& x, rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
#pragma omp parallel default(none) shared(x,y)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}
}

}
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z);
{

const int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(x,y,a,z)
{

#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 29 / 33

Parallel DAXPY, simplifications

void init(rarray<double,1>& x, rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
#pragma omp parallel for default(none) shared(x,y)

for (int i=0; i<n; i++) {
x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}

}
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z);
{

const int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(x,y,a,z)

for (int i=0; i<n; i++)
z[i] += a * x[i] + y[i];

}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 30 / 33

Parallel DAXPY, simplifications

void init(rarray<double,1>& x, rarray<double,1>& y) {
const int n = std::min(x.size(), y.size());
#pragma omp parallel for default(none) shared(x,y)
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);

}
}
void mydaxpy(double a, const rarray<double,1>& x,

const rarray<double,1>& y, rarray<double,1>& z);
{

const int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(x,y,a,z)
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 31 / 33

Parallel DAXPY, simplifications

$ make mydaxpy
$./mydaxpy
Tock registers 0.3936 sec
$ make mydaxpy-parallel
$ export OMP_NUM_THREADS=16
$./mydaxpy-parallel
Tock registers 0.07156 sec

5.5 times faster!

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 32 / 33

Getting reliable timing: get your own cores!

To get reliable timings, on the teach01 node, first grab a compute node for your self, i.e, do:
$ debugjob -n 8 # from teach.scinet.utoronto.ca i.e. teach01
$ cd $SCRATCH/omp
$ source setup

If you leave out -n 8 you only get one core, so you can’t do parallelism.

(In contrast, on Niagara, leaving out -n 8 gives you a 40 core node)

Ramses van Zon, Marcelo Ponce PHY1610 - High Performance Scientific Computing with OpenMP March 23, 2021 33 / 33

	Shared Memory Programming
	Loops

