
PHY1610H - Scientific Computing:
Mini-intro to “SciNet”: Teach/Niagara clusters

Serial Jobs

Ramses van Zon and Marcelo Ponce

SciNet HPC Consortium/Physics Department
University of Toronto

March 2021

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 1 / 35

Today’s class

Today we will discuss the following topics:

Approaches for dealing with serial jobs.

Mini-intro to SciNet: Niagara/Teach Cluster.

GNU parallel.

RAMdisk.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 2 / 35

Why Parallel Programming?

To review:

Your desktop has many cores, as do the nodes on SciNet’s clusters: ie. Teach and
Niagara clusters.

Your code would run a lot faster if it could use all of those cores simultaneously, on the
same problem.

Or even better, use cores on many nodes simultaneously.

So we need to adjust our programming accordingly: thus parallel programming.

There are several different approaches to parallel programming.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 3 / 35

Serial programming

Sometimes your code is serial, meaning it only runs on a single processor, and that’s as far as
it’s going to go. There are several reasons why we might not push the code farther:

The problem involves a parameter study; each iteration of the parameter study is very
swift; each iteration is independent; but many many need to be done.

The algorithm is inherently serial, and there’s not much that can be done about it.

You’re running a commercial code, and don’t have the source code to modify.

You’re graduating in six months, and don’t have time to parallelize your code.

Sometimes you just have to let your code be serial, and run the serial processes in parallel.
That’s the topic of today’s class.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 4 / 35

What are our assumptions?

Let us assume the following situation:

You have a serial code.

Your code takes a set of parameters, either from a file or (preferably) from the command
line.

The code runs in a reasonably short amount of time (minutes to hours).

You have a large parameter space you want to search, which means hundreds or
thousands of combinations of values of parameters.

You’d probably like some feedback on your jobs, things like error checking, fault
tolerance, etc.

You want to run your code on SciNet: Niagara, Teach, ...

How do we go about performing this set of calculations efficiently?

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 5 / 35

What are SciNet’s concerns?

What concerns does SciNet have about you running serial jobs on our clusters?

Scheduling is done by node. Each node comes with 16 cores and ∼64Gb of available
memory. Use your resources efficiently.

I Use all of the processors on the nodes you’ve been given continuously (load balancing), or
I use all the memory you’ve been given efficiently (if 8 instances of your serial job won’t fit in

memory).
I This almost certainly means having multiple subjobs running simultaneously on your nodes.

Don’t do heavy I/O.
I Don’t try to read thousands of files.
I Don’t generate thousands of files.

Using resources efficiently makes sense for you. Not crashing the filesystem is everyone’s
responsibility.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 6 / 35

What are your options?

So how might we go about running multiple instances the code (subjobs) simultaneously?

Write a script from scratch which launches and manages the subjobs.

If the code is written in Python, you could use ipython notebook to manage the subjobs.

If the code is written in R, you could use the parallel R utilities to manage the subjobs.

Use an existing script, such as GNU Parallel1, to manage the subjobs.

We’ll discuss the first and last options in this class.

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login; The USENIX Magazine, February
2011:42-47.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 7 / 35

Niagara
80,960 x86-64 cores.

2,024 Lenovo SD530 nodes

Per node:
I 40 Intel

SkyLake/CascadeLake
cores @2.4/2.5 GHz

I 188 GiB RAM per node
(> 4 GiB per core)

I 0 gpus, 0 harddisks

3.6 PFlops delivered / 6.25
PFlops theoretical.
#53 on the Jun 2018
TOP500/currently #83

Operating system: Linux
CentOS 7.

Burst Buffer for fast I/O

Interconnect: InfiniBand Dragonfly+
1:1 up to 432 nodes, 2:1 beyond that.

Parallel share file system for home, scratch, project

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 8 / 35

Using Niagara: Logging in

As with all SciNet and Compute Canada systems, access to Niagara is via ssh (secure shell)
only.

To access SciNet systems, first open a terminal window (e.g. MobaXTerm on Windows).

Then ssh into the Niagara login nodes with your CC credentials:

$ ssh -Y USERNAME@niagara.scinet.utoronto.ca

The Niagara login nodes are where you develop, edit, compile, prepare and submit jobs.

These login nodes are not part of the Niagara compute cluster, but have the same
architecture, operating system, and software stack.

The optional -Y is needed to open windows from the Niagara command-line onto your
local X server.

To run on Niagara’s compute nodes, you must submit a batch job.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 9 / 35

Storage Systems and Locations on Niagara

Home and scratch
You have a home and scratch directory on
the system, whose locations will be given by

$HOME=/home/g/groupname/username

$SCRATCH=/scratch/g/groupname/username

Use these convenient variables!

nia-login07:~$ pwd

/home/s/scinet/mponce

nia-login07:~$ cd $SCRATCH

nia-login07:mponce$ pwd

/scratch/s/scinet/mponce

Project
Users from groups with a RAC allocation will also have a project directory.

$PROJECT=/project/g/groupname/username

Burst Buffer
Groups with heavy I/O can request access to a smaller, faster parallel file system called burst
buffer.
$BBUFFER=/bb/g/groupname/username

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 10 / 35

Storage Systems and Locations on Niagara

Home and scratch
You have a home and scratch directory on
the system, whose locations will be given by

$HOME=/home/g/groupname/username

$SCRATCH=/scratch/g/groupname/username

Use these convenient variables!

nia-login07:~$ pwd

/home/s/scinet/mponce

nia-login07:~$ cd $SCRATCH

nia-login07:mponce$ pwd

/scratch/s/scinet/mponce

Project
Users from groups with a RAC allocation will also have a project directory.

$PROJECT=/project/g/groupname/username

Burst Buffer
Groups with heavy I/O can request access to a smaller, faster parallel file system called burst
buffer.
$BBUFFER=/bb/g/groupname/username

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 10 / 35

Storage Systems and Locations on Niagara

Home and scratch
You have a home and scratch directory on
the system, whose locations will be given by

$HOME=/home/g/groupname/username

$SCRATCH=/scratch/g/groupname/username

Use these convenient variables!

nia-login07:~$ pwd

/home/s/scinet/mponce

nia-login07:~$ cd $SCRATCH

nia-login07:mponce$ pwd

/scratch/s/scinet/mponce

Project
Users from groups with a RAC allocation will also have a project directory.

$PROJECT=/project/g/groupname/username

Burst Buffer
Groups with heavy I/O can request access to a smaller, faster parallel file system called burst
buffer.
$BBUFFER=/bb/g/groupname/username
M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 10 / 35

Storage Limits on Niagara

location quota block size expiration time backed up on login on compute

$HOME 100 GB 1 MB yes yes read-only
$SCRATCH 25 TB 16 MB 2 months no yes yes
$PROJECT by group allocation 16 MB yes yes yes
$BBUFFER 10TB, by request 1 MB 48 hours no yes yes
$ARCHIVE by group allocation dual-copy no no

Compute nodes do not have local storage, but they have a lot of memory, which you can
use as if it is local disk ($SLURM TMPDIR)

$ARCHIVE space, also called nearline storage or HPSS, is not mounted on login or
compute nodes.

Backup means a recent snapshot, not an achive of all data that ever was.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 11 / 35

https://docs.scinet.utoronto.ca/index.php/HPSS

Software and Libraries
Once you are on one of the login nodes, what software is already installed?

Other than essentials, all installed
software is made available using module
commands.

These set environment variables (PATH,
etc.)

Allows multiple, conflicting versions of a
given package to be available.

module spider shows the available
software.

nia-login07:~$ module spider

The following is a list of the modules currently av

CCEnv: CCEnv

NiaEnv: NiaEnv/2018a

anaconda2: anaconda2/5.1.0

anaconda3: anaconda3/5.1.0

autotools: autotools/2017

autoconf, automake, and libtool

boost: boost/1.66.0

cfitsio: cfitsio/3.430

cmake: cmake/3.10.2 cmake/3.10.3

...

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 12 / 35

Software and Libraries
Once you are on one of the login nodes, what software is already installed?

Other than essentials, all installed
software is made available using module
commands.

These set environment variables (PATH,
etc.)

Allows multiple, conflicting versions of a
given package to be available.

module spider shows the available
software.

nia-login07:~$ module spider

The following is a list of the modules currently av

CCEnv: CCEnv

NiaEnv: NiaEnv/2018a

anaconda2: anaconda2/5.1.0

anaconda3: anaconda3/5.1.0

autotools: autotools/2017

autoconf, automake, and libtool

boost: boost/1.66.0

cfitsio: cfitsio/3.430

cmake: cmake/3.10.2 cmake/3.10.3

...

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 12 / 35

Software and Libraries, continued

module load <module-name>
use particular software

module purge

remove currently loaded modules

module spider (or module

spider <module-name>)
list available software packages

module avail

list loadable software packages

module list

list loaded modules

On Niagara, there are really two software stacks:

1 A Niagara software stack tuned and compiled
for this machine. This stack is available by
default, but if not, can be reloaded with

module load NiaEnv

2 The same software stack available on Compute
Canada’s heterogeneous clusters Graham,
Cedar and Beluga:

module load CCEnv arch/avx512 StdEnv

The StdEnv module loads the same default
modules as available on
Graham/Cedar/Béluga.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 13 / 35

https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Beluga

Software and Libraries, continued

module load <module-name>
use particular software

module purge

remove currently loaded modules

module spider (or module

spider <module-name>)
list available software packages

module avail

list loadable software packages

module list

list loaded modules

On Niagara, there are really two software stacks:

1 A Niagara software stack tuned and compiled
for this machine. This stack is available by
default, but if not, can be reloaded with

module load NiaEnv

2 The same software stack available on Compute
Canada’s heterogeneous clusters Graham,
Cedar and Beluga:

module load CCEnv arch/avx512 StdEnv

The StdEnv module loads the same default
modules as available on
Graham/Cedar/Béluga.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 13 / 35

https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Beluga

Software and Libraries, continued

module load <module-name>
use particular software

module purge

remove currently loaded modules

module spider (or module

spider <module-name>)
list available software packages

module avail

list loadable software packages

module list

list loaded modules

On Niagara, there are really two software stacks:

1 A Niagara software stack tuned and compiled
for this machine. This stack is available by
default, but if not, can be reloaded with

module load NiaEnv

2 The same software stack available on Compute
Canada’s heterogeneous clusters Graham,
Cedar and Beluga:

module load CCEnv arch/avx512 StdEnv

The StdEnv module loads the same default
modules as available on
Graham/Cedar/Béluga.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 13 / 35

https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Beluga

Software and Libraries, continued

module load <module-name>
use particular software

module purge

remove currently loaded modules

module spider (or module

spider <module-name>)
list available software packages

module avail

list loadable software packages

module list

list loaded modules

On Niagara, there are really two software stacks:

1 A Niagara software stack tuned and compiled
for this machine. This stack is available by
default, but if not, can be reloaded with

module load NiaEnv

2 The same software stack available on Compute
Canada’s heterogeneous clusters Graham,
Cedar and Beluga:

module load CCEnv arch/avx512 StdEnv

The StdEnv module loads the same default
modules as available on
Graham/Cedar/Béluga.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 13 / 35

https://docs.computecanada.ca/wiki/Graham
https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Beluga

Compiling on Niagara
Suppose you have to compile your own C, C++ or Fortran code.

Not a problem: Niagara has GNU compilers as well as Intel compilers installed in modules.

MPI? Not a problem either: Niagara has openmpi and intelmpi libraries as modules.

We recommend that you use the intel compilers with openmpi libraries.
Use the -march=native or -xhost compilation flags to get the most out of Niagara’s
cpus. . . .

Example

nia-login07:~$ module load intel/2020u4 gsl/2.5

nia-login07:~$ ls

main.c module.c

nia-login07:~$ icc -c -O3 -xHost -o main.o main.c

nia-login07:~$ icc -c -O3 -xHost -o module.o module.c

nia-login07:~$ icc -o main module.o main.o -lgsl -mkl

nia-login07:~$./main

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 14 / 35

Testing
You really should test your code before you submit it to the cluster to know if your code is
correct and what kind of resources you need.

Small test jobs can be run on the login nodes.
Rule of thumb: couple of minutes, taking at most about 1-2GB of memory, couple of
cores.

You can run the the ddt debugger on the login nodes after module load ddt.

The ddt module also gives you the map performance profiler.

Short tests that do not fit on a login node, or for which you need a dedicated node,
request an interactive debug job with the debugjob command

nia-login07:~$ debugjob N

where N is the number of nodes. The duration of your interactive debug session can be at
most one hour, can use at most N=4 nodes, and each user can only have one such
session at a time.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 15 / 35

SciNet’s Niagara/Teach-cluster Scheduler
on a HPC cluster, we don’t run programs as we will do in our own computers

the scheduler is a program that organizes the work load on the cluster

you submit a request to the scheduler, and it will “find” the right moment for your
request to run

it does that, by looking at the resources available, your priority, times and resources
requested, ...

it is indeed a quite complicated process, many variables to take into consideration

plus the continuous dynamics of the cluster...

even when we run ’interactively’ (debugjob, salloc ...), we are requesting resources to
the scheduler

we refer to the ’request’ (processes/programs to run) as jobs

the scheduler keeps everything in shape by organizing queues for the jobs to run

what we will see next is how to comunicate with the scheduler and request resources to
run our programs

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 16 / 35

Submitting jobs

Niagara uses SLURM as its job scheduler.

You submit jobs from a login node by passing a script to the sbatch command:

nia-login07:~$ sbatch jobscript.sh

This puts the job in the queue. It will run on the compute nodes in due course.

Jobs will run under their group’s RRG allocation, or, if the group has none, under a RAS
(or “default”) allocation.

Keep in mind:

Scheduling is by node, so in multiples of 40-cores. Use all cores!

Maximum walltime is 24 hours.

Jobs must write to your scratch or project directory (home is read-only on compute
nodes).

Compute nodes have no internet access.
→ Download data you need beforehand on a login node.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 17 / 35

Submitting jobs

Niagara uses SLURM as its job scheduler.

You submit jobs from a login node by passing a script to the sbatch command:

nia-login07:~$ sbatch jobscript.sh

This puts the job in the queue. It will run on the compute nodes in due course.

Jobs will run under their group’s RRG allocation, or, if the group has none, under a RAS
(or “default”) allocation.

Keep in mind:

Scheduling is by node, so in multiples of 40-cores. Use all cores!

Maximum walltime is 24 hours.

Jobs must write to your scratch or project directory (home is read-only on compute
nodes).

Compute nodes have no internet access.
→ Download data you need beforehand on a login node.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 17 / 35

Submitting jobs

Niagara uses SLURM as its job scheduler.

You submit jobs from a login node by passing a script to the sbatch command:

nia-login07:~$ sbatch jobscript.sh

This puts the job in the queue. It will run on the compute nodes in due course.

Jobs will run under their group’s RRG allocation, or, if the group has none, under a RAS
(or “default”) allocation.

Keep in mind:

Scheduling is by node, so in multiples of 40-cores. Use all cores!

Maximum walltime is 24 hours.

Jobs must write to your scratch or project directory (home is read-only on compute
nodes).

Compute nodes have no internet access.
→ Download data you need beforehand on a login node.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 17 / 35

SLURM nomenclature
SLURM has a somewhat different way of referring to things like MPI processes and threads
tasks.

Term Meaning SLURM Scheduler option(s)

·job Scheduled piece of work for which specific
resources were requested

job sbatch,salloc,debugjob

·node Basic computing component with several
cores (40) that share memory

node --nodes -N

·MPI process One of a group of programs using MPI for
parallel computing

task --ntasks -n

--ntasks-per-node

·physical core A fully-functional independent execution
unit

billing

·logical cpu An execution unit that the operating
system can assign work to

cpu --ncpus-per-task

·thread One of multiple simultaneous execution
paths in a program that share memory

--ncpus-per-task

and
OMP NUM THREADS

·hyperthreading Hardware-assisted overloading of cores
M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 18 / 35

Hyperthreading: Logical CPUs vs. cores

Hyperthreading, a technology that leverages more of the physical hardware by pretending
there are twice as many logical cores than real once, is enabled on Niagara.

So the OS and scheduler see 80 logical cores.

80 logical cores vs. 40 real cores typically gives about a 5-10% speedup (YMMV).

Because Niagara is scheduled by node, hyperthreading is actually fairly easy to use:

Ask for a certain number of nodes N for your jobs.

You know that you get 40xN cores, so you will use (at least) a total of 40xN MPI
processes or threads.
(mpirun, srun, and the OS will automaticallly spread these over the real cores)

But you should also test if running 80xN MPI processes or threads gives you any speedup.

Regardless, your usage will be counted as 40xNx(walltime in years).

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 19 / 35

Hyperthreading: Logical CPUs vs. cores

Hyperthreading, a technology that leverages more of the physical hardware by pretending
there are twice as many logical cores than real once, is enabled on Niagara.

So the OS and scheduler see 80 logical cores.

80 logical cores vs. 40 real cores typically gives about a 5-10% speedup (YMMV).

Because Niagara is scheduled by node, hyperthreading is actually fairly easy to use:

Ask for a certain number of nodes N for your jobs.

You know that you get 40xN cores, so you will use (at least) a total of 40xN MPI
processes or threads.
(mpirun, srun, and the OS will automaticallly spread these over the real cores)

But you should also test if running 80xN MPI processes or threads gives you any speedup.

Regardless, your usage will be counted as 40xNx(walltime in years).

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 19 / 35

Example submission script (OpenMP)

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --cpus-per-task=40

#SBATCH --time=1:00:00

#SBATCH --job-name openmp_job

#SBATCH --output=openmp_output_%j.txt

#SBATCH --mail-type=FAIL

module load intel/2018.2

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./openmp_example

or ’srun ./openmp_example’

nia-login07:scratch$ sbatch openmp_job.sh

First line indicates that this is a bash
script.

Lines starting with #SBATCH go to
SLURM.

sbatch reads these lines as a job request
(which it gives the name openmp job).

In this case, SLURM looks for one node
with 40 cores to be run inside one task,
for 1 hour.

Submit from /scratch, as /home is
read-only.

Once it founds a node,the script is run:
I Loads modules;
I Sets an environment variable;
I Runs the openmp example application.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 20 / 35

Example submission script (OpenMP)

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --cpus-per-task=40

#SBATCH --time=1:00:00

#SBATCH --job-name openmp_job

#SBATCH --output=openmp_output_%j.txt

#SBATCH --mail-type=FAIL

module load intel/2018.2

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./openmp_example

or ’srun ./openmp_example’

nia-login07:scratch$ sbatch openmp_job.sh

First line indicates that this is a bash
script.

Lines starting with #SBATCH go to
SLURM.

sbatch reads these lines as a job request
(which it gives the name openmp job).

In this case, SLURM looks for one node
with 40 cores to be run inside one task,
for 1 hour.

Submit from /scratch, as /home is
read-only.

Once it founds a node,the script is run:
I Loads modules;
I Sets an environment variable;
I Runs the openmp example application.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 20 / 35

Example submission script (MPI)

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks=80

#SBATCH --time=1:00:00

#SBATCH --job-name mpi_job

#SBATCH --output=mpi_output_%j.txt

#SBATCH --mail-type=FAIL

module load intel/2018.2

module load openmpi/3.1.0

mpirun ./mpi_example

’ # or srun ./mpi_example’

nia-login07:scratch$ sbatch mpi_job.sh

First line indicates that this is a bash
script.

Lines starting with #SBATCH go to
SLURM.

sbatch reads these lines as a job request
(which it gives the name mpi job)

In this case, SLURM looks for 2 nodes
with 40 cores on which to run 80 tasks,
for 1 hour.

Submit from /scratch, so output can be
written.

Once it found nodes, the script is run:
I Loads modules;
I Runs the mpi example application.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 21 / 35

Example submission script (MPI)

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks=80

#SBATCH --time=1:00:00

#SBATCH --job-name mpi_job

#SBATCH --output=mpi_output_%j.txt

#SBATCH --mail-type=FAIL

module load intel/2018.2

module load openmpi/3.1.0

mpirun ./mpi_example

’ # or srun ./mpi_example’

nia-login07:scratch$ sbatch mpi_job.sh

First line indicates that this is a bash
script.

Lines starting with #SBATCH go to
SLURM.

sbatch reads these lines as a job request
(which it gives the name mpi job)

In this case, SLURM looks for 2 nodes
with 40 cores on which to run 80 tasks,
for 1 hour.

Submit from /scratch, so output can be
written.

Once it found nodes, the script is run:
I Loads modules;
I Runs the mpi example application.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 21 / 35

Monitoring jobs - command line

Once the job is incorporated into the queue, there are some command you can use to monitor
its progress.

squeue to show the job queue (squeue -u $USER for just your jobs);

squeue -j JOBID to get information on a specific job
(alternatively, scontrol show job JOBID, which is more verbose).

squeue --start -j JOBID to get an estimate for when a job will run.

jobperf JOBID to get an instantaneous view of the cpu+memory usage of a running job’s
nodes.

scancel -i JOBID to cancel the job.

scancel -u USERID to cancel all your jobs (careful!).

sinfo -p compute to look at available nodes.

sacct to get information on your recent jobs.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 22 / 35

If you’re not sure . . .

We’ve gone over this quickly, quite intentionally.

There are lots of details that we’ve skipped over.

If you haven’t taken the ”Intro to SciNet” class, we recommend you do.

If you’ve never run on SciNet, read the SciNet User Tutorial and the GPC quickstart
guide.

Almost certainly your question is answered on the docs.scinet.utoronto.ca.

If all else fails, email us (support@scinet.utoronto.ca).

https://docs.scinet.utoronto.ca

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 23 / 35

https://support.scinet.utoronto.ca/education/go.php/238/content.php/cid/596/
https://wiki.scinet.utoronto.ca/wiki/images/5/54/SciNet_Tutorial.pdf
https://wiki.scinet.utoronto.ca/wiki/index.php/GPC_Quickstart
https://wiki.scinet.utoronto.ca/wiki/index.php/GPC_Quickstart
https://docs.scinet.utoronto.ca
https://docs.scinet.utoronto.ca

Now back to serial

If your subjobs all take the same amount
of time, there’s nothing in principle wrong
with this submission script.

Does it use all the cores? Yes.

Will any cores be wasting time not
running? Not if all the subjobs take
the same amount of time.

But if your subjobs take variable amounts
of time this approach isn’t going to work.

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=40

#SBATCH --time=1:00:00

#SBATCH --job-name=serialx8

load modules needed...

module load intel/2020u4 gsl/2.5

cd $SLURM SUBMIT DIR

Run the code on 8 cores.

(cd jobdir1; ../mycode) &

(cd jobdir2; ../mycode) &

(cd jobdir3; ../mycode) &

. . .

(cd jobdir38; ../mycode) &

(cd jobdir39; ../mycode) &

(cd jobdir40; ../mycode) &

Tell the script to wait, or all

the subjobs get killed immediately.

wait

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 24 / 35

Why not roll your own?

Suppose I can only fit 4 subjobs
simultaneously on a node. What’s wrong
with this approach?

Reinventing the wheel,

More code to maintain/debug,

No load balancing,

No job control,

No error checking,

No fault tolerance,

No multi-node jobs.

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --time=5:00:00

#SBATCH --job-name=badserialx4

load modules needed...

module load intel/2020u4 gsl/2.5

cd $SLURM SUBMIT DIR

function dobyfour() {
while [-n "$1"]

do

./variable time code $1 &

./variable time code $2 &

./variable time code $3 &

./variable time code $4 &

wait

shift 4

done

}
dobyfour $(seq 100)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 25 / 35

GNU Parallel

GNU parallel solves the problem of managing blocks of subjobs of differing duration.

Basically a perl script.

But surprisingly versatile, especially for
text input.

Gets your many cases assigned to different
cores and on different nodes without
much hassle.

Invoked using the ”parallel” command.

1 O. Tange, “GNU Parallel - The Command-Line Power Tool”
;login: 36 (1), 42-47 (2011)

2 http://www.gnu.org/software/parallel/parallel_tutorial.html

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 26 / 35

http://www.gnu.org/software/parallel/parallel_tutorial.html

GNU parallel example

Notes about our example:

Load the gnu-parallel module
within your script.

The ”-j 8” flag indicates you
wish GNU parallel to run 8
subjobs at a time.

If you can’t fit 8 subjobs onto a
node due to memory constraints,
specify a different value for the
”-j” flag.

Put all the commands for a
given subjob onto a single line.

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=80

#SBATCH --time=1:00:00

#SBATCH --job-name=gnu-parallelx80

cd $SLURM SUBMIT DIR

load modules needed...

module load intel/2020u4 gsl/2.5

module load gnu-parallel

Run the code on 80 cores.

parallel -j $SLURM TASKS PER NODE <<EOF

cd jobdir1; ../mycode; echo "job 1 done"

cd jobdir2; ../mycode; echo "job 2 done"

cd jobdir3; ../mycode; echo "job 3 done"

.

.

.

cd jobdir199; ../mycode; echo "job 199 done"

cd jobdir200; ../mycode; echo "job 200 done"

EOF

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 27 / 35

GNU Parallel, continued

What does GNU parallel do?

GNU parallel assigns subjobs to the processors.
I As subjobs finish it assigns new subjobs to the free processors.
I It continues to do assign subjobs until all subjobs in the subjob list are assigned.

Consequently there is built-in load balancing!

You can use more than 8 subjobs per node (hyperthreading).

You can use GNU parallel across multiple nodes as well.

It can also log a record of each subjob, including information about subjob duration, exit
status, etc.

If you’re running blocks of serial subjobs, just use GNU parallel!

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 28 / 35

Backfilling

Without GNU parallel:

17 hours
42% utilization

With GNU parallel:

10 hours
72% utilization

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 29 / 35

GNU parallel example 2
Sometimes it’s easier to just create a list that holds all of the subjob commands.

user@gpc-f103n084-ib0:~>
user@gpc-f103n084-ib0:~> cat subjobs

cd jobdir1; ../mycode; echo "job 1 done"

cd jobdir2; ../mycode; echo "job 2 done"

cd jobdir3; ../mycode; echo "job 3 done"

.

.

.

cd jobdir198; ../mycode; echo "job 198 done"

cd jobdir199; ../mycode; echo "job 199 done"

cd jobdir200; ../mycode; echo "job 200 done"

user@gpc-f103n084-ib0:~>

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=80

#SBATCH --time=1:00:00

#SBATCH --job-name=gnu-parallelx80

load modules needed...

module load intel/2020u4 gsl/2.5

module load gnu-parallel

cd $SLURM SUBMIT DIR

Run the code on 80 cores.

parallel -j $SLURM TASKS PER NODE \

--no-run-if-empty < subjobs

Use the --no-run-if-empty flag to indicate that empty lines in the subjob list file should be
skipped.
M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 30 / 35

~
~
~

GNU parallel syntax

Some commonly used arguments for GNU parallel:

--jobs NUM, sets the number of simultaneous subjobs. By default parallel uses the
number of virtual cores (32/80 on Tech/Niagara nodes). Same as -j N.

--joblog LOGFILE, causes parallel to output a record for each completed subjob. The
records contain information about subjob duration, exit status, and other goodies.

--resume, when combined with --joblog, continues a full GNU parallel job that was
killed prematurely.

--pipe, splits stdin into chunks given to the stdin of each subjob.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 31 / 35

GNU parallel multi-node example

Notes about using multiple nodes:

By default parallel only knows about
the head node. Tell it about the
other nodes using --sshloginfile

$PBS NODEFILE.

The non-head nodes also don’t know
where they should be working, thus
--workdir $PWD.

This setup will run 40 jobs
simultaneously, and only makes sense
if, say, several hundred jobs are in
your subjobs file.

Remember that the fewer nodes you
request, the more likely your job is to
run.

#!/ bin/bash

SLURM submission script for multiple serial jobs

on multiple Niagara nodes

#

#SBATCH --nodes =4

#SBATCH --ntasks -per -node =40

#SBATCH --time =12:00:00

#SBATCH --job -name gnuparallel -multinode -example

DIRECTORY TO RUN - $SLURM_SUBMIT_DIR is the

directory from which the job was submitted

cd $SLURM_SUBMIT_DIR

Turn off implicit threading in Python , R

export OMP_NUM_THREADS =1

module load gnu -parallel /20180322

HOSTS=$(scontrol show hostnames $SLURM_NODELIST |

tr ’\n’ ,)

parallel --env OMP_NUM_THREADS ,PATH ,

LD_LIBRARY_PATH --joblog slurm -$SLURM_JOBID.

log -j $SLURM_NTASKS_PER_NODE -S $HOSTS --wd

$PWD "cd serialjobdir {} && ./ doserialjob {}"

::: {001..800}

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 32 / 35

GNU Parallel, more options

GNU parallel has a tonne of optional arguments. We’ve barely scratched the surface.

There are specialized ways of passing in combinations of arguments to functions.

There are ways to modify arguments to functions on the fly.

There are specialized ways of formatting output.

Review the man page for parallel, or review the program’s webpage, for a full list of
options.

https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 33 / 35

https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara

Ramdisk - Local I/O

Can use upto 70% of RAM as local
disk, (∼44GB on Teach) on a regular
node.

Accessible from /dev/shm/ only on
local node.

Much faster than “spinning” disk.

Requires you to stage your data
in/out.

Sacrifices programs RAM space.

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --cpus-per-task=40

#SBATCH --time=1:00:00

#SBATCH --job-name=ramdisk

load modules needed...

module load intel/2020u4 gsl/2.5

mkdir /dev/shm/$USER/workdir

cp $SLURM SUBMIT DIR/* /dev/shm/$USER/workdir

cd /dev/shm/$USER/workdir

for ((i=1;i<=40;i++)); do

./executable < $i.in > $i.out &

done

wait

tar cf $SLURM SUBMIT DIR/out.tar *.out

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 34 / 35

Summary on Serial Jobs
Be aware of the features of your code, and the details of the hardware where you will run
it.

If you need to run serial jobs on a cluster with multicore architecture, be sure to run them
in batches, so as to use your nodes efficiently.

Unless your jobs all take the same amount of time, don’t try to write your own serial-job
management code.

Use GNU-Parallel to manage your serial jobs.

More details on GNU-Parallel, can be found in this tech talk.

Ramdisk (/dev/shm) available to local node.

References

https://docs.scinet.utoronto.ca/index.php/Teach

https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart

https:

//docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Serial Jobs March 2021 35 / 35

https://wiki.scinet.utoronto.ca/wiki/images/7/7b/Tech-talk-gnu-parallel.pdf
https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart
https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara
https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara

	Serial Jobs
	Serial programs
	Serial jobs on SciNet

	Intro to SciNet
	Running serial jobs
	Writing your own
	GNU parallel
	Multi-node GNU parallel

