
PHY1610H - Scientific Computing:
Introduction to Parallel Programming

Ramses van Zon and Marcelo Ponce

SciNet HPC Consortium/Physics Department
University of Toronto

March 2021

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 1 / 30



Lecture 17: Today’s class

Today we will discuss the following topics:

Motivation for parallel programming.

Limits to parallel programming.

Supercomputing achitectures.

Different parallel programming approaches.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 2 / 30



Why is HPC necessary?

Big Data: Modern experiments and observations yield vastly more data to be processed
than in the past.

Big Science: As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

New Science: which before could not even be done, now becomes reachable.

However:

Advances in processor clock speeds, bigger and faster memory and disks have been
lagging as compared to ten years ago. We can no longer ”just wait a year” and get a
better computer.

So more computing resources here means: more cores running concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 3 / 30



Why Parallel Programming?

Faster
There’s a limit to how fast one
computer can compute.

Bigger
There’s a limit to how much
memory, disk, etc., can be put
on one computer.

More
We want to do the same thing
that was done on one computer,
but thousands of times.

So use more computers!

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 4 / 30



Wait, what about Moore’s Law?

(source: www.overlock.net)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 5 / 30



Wait, what about Moore’s Law?

Moore’s Law:

. . . describes a long-term trend in the history of computing hardware. The number of
transistors that can be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moore’s Law didn’t promise us increasing clock speed.

We’ve gotten more transistors but it’s getting hard to push clock-speed up. Power density
is the limiting factor.

So we’ve gotten more cores at a fixed clock speed.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 6 / 30



Wait, what about Moore’s Law?

(source: www.extremetech.com)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 7 / 30



Concurrency

All these cores need
something to do.

We need to find parts of the
program that can done
independently, and therefore
on different cores
concurrently.

We would like there to be
many such parts.

Ideally, the order of execution
should not matter either.

However, data dependencies
limit concurrency.

(source: http://flickr.com/photos/splorp)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 8 / 30



Parameter study: best case scenario

Suppose the aim is to get
results from a model as a
parameter varies.

We can run the serial
program on each processor
at the same time.

Thus we get ’more’ done.

µ = 1

Answer

µ = 2

Answer

µ = 3

Answer

µ = 4

Answer

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 9 / 30



Throughput
How many tasks can you do per unit time?

throughput = H =
N

T

N is the number of tasks, T is the total time.

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor of P .

Answer

T = NT1

H = 1/T1

Answer Answer Answer Answer

T = NT1/P

H = P/T1
M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 10 / 30



Scaling — Throughput
How a given problem’s throughput scales as processor number increases is called “strong
scaling”.
In the previous case, linear scaling:

H ∝ P
This is perfect scaling. These are called ”embarrassingly parallel” jobs.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 11 / 30



Scaling — Speedup
Speedup: how much faster the problem is solved as processor number increases.
This is measured by the serial time divided by the parallel time

S =
Tserial

T (P )

For embarrassingly parallel applications, S ∝ P : linear speed up.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 12 / 30



Non-ideal cases

Say we want to integrate
some tabulated
experimental data.

Integration can be split up,
so different regions are
summed by each processor.

Non-ideal:
I We first need to get data

to each processor.
I At the end we need to

bring together all the
sums: ‘reduction’.

Partition data

R1 R2 R3 R4

Reduction

Answer

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 13 / 30



Non-ideal cases

Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)

Suppose non-parallel part is constant: Ts

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 14 / 30



Amdahl’s law

Speed-up (without parallel overhead): S =
Tserial

T (P )
=
NT1 + Ts
NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

0 2 4 6 8 10 12 14 16
P

0

2

4

6

8

10

12

14

16

S

The serial part dominates asymptotically. The speed-up is limited,
no matter what size of P . f = 5% above.
M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 15 / 30



Amdahl’s law, example

An example of Amdahl’s law:

Suppose your code consists of a portion which is serial, and a portion that can be
parallelized.

Suppose further that, when run on a single processor,
I the serial portion takes one hour to run.
I the parallel porition takes nineteen hours to run.

Even if you throw an infinite number of processors at the parallel part of the problem, the
code will never run faster than 1 hour, since that is the amount of time the serial part
needs to complete.

The goal is to structure your program to minimize the serial portions of the code.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 16 / 30



Scaling efficiency

Speed-up compared to ideal factor P :

Efficiency =
S

P

This will invariably fall off for larger P , except for embarrassingly parallel problems.

Efficiency ∼
1

fP

P→∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.

All you can aim for here is to make the efficiency as high as possible.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 17 / 30



Supercomputer architectures
Supercomputer architectures comes in a number of different types:

Clusters, or distributed-memory machines, are in essence a bunch of desktops linked
together by a network (”interconnect”). Easy and cheap.

Multi-core machines, or shared-memory machines, are a collection of processors that can
see and use the same memory. Limited number of cores, and much more expensive when
the machine is large.

Accelerator machines, are machines which contain an ”off-host” accelerator, such as a
GPGPU or Xeon Phi, that is used for computation. Quite fast, but complicated to
program.

Vector machines were the early supercomputers. Very expensive, especially at scale.
These days most chips have some low-level vectorization, but you rarely need to worry
about it.

Most supercomputers are a hybrid combo of these different
architectures.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 18 / 30



Distributed Memory: Clusters

Clusters are the simplest type of
parallel computer to build:

Take existing powerful
standalone computers,

and network them.

Easy to build and easy to
expand.

SciNet’s Niagara
supercomputer and the teach
cluster are examples.

(source: http://flickr.com/photos/eurleif)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 19 / 30



Compute Resources at SciNet
Teach Cluster (part of old GPC)

Number of nodes: 42
interconnect: Infiniband

RAM/node: 64 GB
Cores/node: 16

Niagara

Number of nodes: 1500 (60000 cores)
interconnect: Dragonfly+

RAM/node: 202GB
Cores/node: 40 (80 hyperthreads)

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 20 / 30

https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart


Distributed Memory: Clusters

Each Processor is independent!
Programs run on separate
processors, communicating with
each other when necessary.

Each processor has its own
memory! Whenever it needs
data from another processor,
that processor needs to send it.

All communication must be
hand-coded: harder to program.

MPI programming is used in
this scenario.

CPU1

CPU2

CPU3

CPU4

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 21 / 30



Distributed Memory: Clusters

Each Processor is independent!
Programs run on separate
processors, communicating with
each other when necessary.

Each processor has its own
memory! Whenever it needs
data from another processor,
that processor needs to send it.

All communication must be
hand-coded: harder to program.

MPI programming is used in
this scenario.

CPU1

CPU2

CPU3

CPU4

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 21 / 30



Shared Memory

Different processors acting on
one large bank of memory. All
processors ‘see’ the same data.

All coordination/communication
is done through memory.

Each core is assigned a thread
of execution of a single program
that acts on the data.

Your desktop uses this
architecture, if it’s multi-core.

Can also use hyper-threading:
assigning more than one thread
to a given core.

OpenMP is used in this scenario.

Core 1 Core 2

Core 3

Core 4

Memory

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 22 / 30



Threads versus Processes

Threads: Threads of execution
within one process, with access
to the same memory etc.

Processes: Independent tasks
with their own memory and
resources

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 23 / 30



Share memory communication cost

Latency Bandwidth

Gigabit Ethernet
10µs

(10,000 ns)
1 Gb/s

(60 ns/double)

Infiniband
2µs

(2,000 ns)
2-10 Gb/s

(10 ns/double)

NUMA
(shared memory)

0.1µs
(100 ns)

10-20 Gb/s
(4 ns/double)

Processor speed: O(GFlop) ∼ a few ns or less.

Communication is always the slowest part of your calculation!

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 24 / 30



Hybrid architectures

Multicore nodes linked together
with an (high-speed)
interconnect.

Many cores have modest vector
capabilities.

Teach (old-GPC) cluster has
sixteen cores, and 64 GB of
memory, per node.

Niagara has forty cores, and 202
GB of memory, per node.

OpenMP + MPI can be used in
this scenario.

Memory Memory

Memory Memory

Memory Memory

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 25 / 30



Hybrid architectures: accelerators

Multicore nodes linked together
with an (high-speed)
interconnect.

Nodes also contain one or more
accelerators, GPGPUs (General
Purpose Graphics Processing
Units) or Xeon Phis.

These are specialized,
super-threaded (500-2000+)
processors.

Specialized programming
languages, CUDA and OpenCL,
are used to program these
devices.

Memory Memory

Memory Memory

Memory Memory

MPI and OpenMP can also be used
in combination with accelerators.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 26 / 30



Choosing your programming approach

The programming approach you use depends on the type of problem you have, and the type of
machine that you will be using:

Embarrassingly parallel applications: scripting, GNU Parallel1.

Shared memory machine: OpenMP, p-threads.

Distributed memory machine: MPI, PGAS (UPC, Coarray Fortran).

Graphics computing: CUDA, OpenACC, OpenCL.

Hybrid combinations.

We focus on OpenMP, MPI programming in this course.

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login; The USENIX Magazine, February
2011:42-47.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 27 / 30



Data or computation bound?

The programming approach you should use also depends upon the type of problem that is
being solved:

Computation bound, requires task parallelism
I Need to focus on parallel processes/threads.
I These processes may have very different computations to do.
I Bring the data to the computation.

Data bound, requires data parallelism
I There focus here is the operations on a large dataset.
I The dataset is often an array, partitioned and tasks act on separate partitions.
I Bring the computation to the data.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 28 / 30



Granularity

The degree to which parallelizing your algorithm makes sense affects the approach used:

Fine-grained (loop) parallelism
I Smaller individual tasks.
I The data is transferred among processors frequently.
I Shared Memory Model, OpenMP.
I Scale Limitations

Coarse-grained (task) parallelism
I Divide and conquer.
I Data communicated infrequently, after large amounts of computation.
I Distributed memory, MPI.

Too fine-grained→ overhead issues.
Too coarse-grained→ load imbalance issues.

The balance depends upon the architecture, access patterns and the computation.

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 29 / 30



Summary

You need to learn parallel programming to truly use the hardware that you have at your
disposal.

The serial only portions of your code will truly reduce the effectiveness of the parallelism
of your algorithm. Minimize them.

There are many different hardware types available: distributed-memory cluster,
shared-memory, hybrid.

The programming approach you need to use depends on the nature of your problem.

References

https://docs.scinet.utoronto.ca/index.php/Teach

https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart

M. Ponce/R. Van Zon (SciNet HPC @ UofT) PHY1610H: Parallel Programming March 2021 30 / 30

https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart

	Parallel programming
	Moore's law
	Concurrency
	Throughput
	Scaling
	Amdahl's law

	Hardware
	Clusters
	Shared memory
	Hybrids

	Programming approaches

