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Molecular Dynamics Simulations
Used in chemical physics, materials science and the modelling of bio-molecules.

N interacting microscopic particles

(atoms, molecules, nanoparticles).

Newton’s equations of motion

mir̈i = fi({rj})

Initial conditions.
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Molecular Dynamics Simulations

Numerical solution involves:

Initializing the system.

Discretizing time: particles move from one time point to the next.

Making sure every finite time step solves the differential equation to some approximation.

Forces need to be computed every time step.

Many time steps are taken.
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Molecular Dynamics Simulations

What makes MD different from other ordinary differential equations?

Hamiltonian dynamics

Typical solvers (E.g. Runge Kutta) require too many force evaluations, but it is very expensive to evaluation
of f if N is large.

In a broader sense, N-body gravitational systems fall into this class too.
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Specific to Molecular Dynamics

Often the aim is to study equilibrium properties, or transport properties near equilibrium.

The number of particles N is very large.

Different forces acting at the same time, both short range and long range (this matters).

Usually exchange with an implicit environment, e.g.
I exchange energy to simulating a system at specific temperature
I exchange volume if simulating a system at specific pressure
I exchange particle number if simulating at a specific chemical potential
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Hamiltonian dynamics

Molecular Dynamics aims to compute equilibrium, dynamical and transport properties of classical many body
systems.

Many classical systems have Newtonian equations of motion:

ṙ = 1
m
p ṗ = F = −∂U

∂r
,

Energy H = |p|2
2m

+ U(r) is conserved under the dynamics.
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Hamiltonian dynamics

Potential energy is typically a sum of pair potentials:

U(r) =
∑
(i,j)

ϕ(rij) =
N∑

i=1

i−1∑
j=1

ϕ(rij),

which entails the following expression for the forces F :

Fi = −
∑
j 6=i

∂

∂ri
ϕ(rij) =

∑
j 6=i

ϕ′(rij)rj − ri

rij

The double sum makes this (at first) an O(N2) algorithm.
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Equilibrium properties

If the purpose of an MD simulation is some equilibrium property, one want to compute the average of that
property in all possible configurations of the atoms.

One can impose different constraints to the possible configurations, such as

Those with the same number of particles, total energy E, and volume:

micro-canonical ensemble average

Those with a prescribed number of particles, temperature T, and volume. This involve specific energy
fluctuations: canonical ensemble average

Variations with prescribed pressure, or prescribed chemical potentials.

The microcanonical ensemble is the easiest from a numerical perspective, because total energy, number of particles
and volume are intrinsic properties of the system.
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Hamiltonian dynamics as sampling

If the system is “ergodic” then a time average equals the equilibrium micro-canonical average:

lim
tfinal→∞

1
tfinal

∫ tfinal

0
dt A(x(t)) =

∫
dx A(x) δ(E −H(x))∫
dx δ(E −H(x))

.

But the simulation can only give finite number of configurations; it is sampling the configuration space.

Need long times tfinal for proper sampling.

It helps to forget initial equilibration time tequil.

Monte Carlo would work as well, but often, Hamiltonian dynamics moves the system a more appropriate
direction than random displacements.
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Hamiltonian dynamics as dynamics

We’re often also interested in non-equilibrium dynamics, i.e., non-steady dynamics

(protein folding, phase transitions, chemical reactions).

In non-steady situation, the modeling matters often more, i.e., choice of ensemble, accuracy of the
computational method, etc.

Methods used to improve equilibrium sampling may not be appropriate here.

Hard to reach large enough time scales to see the macroscopic dynamics.
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Boundary conditions

When simulating a finite system, its container can
be modeled with a wall force.

But one usually has to be satisfied with simulating
rather smaller size problems, and a wall force
would give finite size effects as well as destroy
translation invariance.

More benign boundary conditions are:

Periodic Boundary Conditions

Infinite repetition of a finite volume.

Particles coordinates between −L/2 and L/2.

A particle exiting simulation box is put back at
the other end.

The box with thick red boundaries is our
simulation box.

Other boxes are copies, or “periodic images’ ’.
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Force calculations

A common potential for non-bonded interactions (e.g. between neutral, spherical particles), is the Lennard-Jones
potential:

ϕ(r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]
,

σ is a measure of the range of the potential.

ε is its strength.

The potential is positive for small r: repulsion.

The potential is negative for large r: attraction.

The potential goes to zero for large r: short-range.

The potential has a minimum of −ε at 21/6σ.
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Force computation

Force computation often the most demanding part of MD:

Computing all forces in an N-body system requires the computation of N(N − 1)/2 forces Fij .

Using periodic boundary conditions makes N =∞.

We will need a few tricks:

Cut-off of interaction rage

Cell division

Neighbour lists

Parallelization
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Cut-off

Change potential to become zero beyond a cut-off
distance rc:

ϕ′(r) =
{
ϕ(r)− ϕ(rc) if r < rc

0 if r ≥ rc

This reduces O(∞) to O(N2).
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Cell division

Divide the simulation box into cells larger than
the cutoff rc.

Make a list of all particles in each cell.

In the sum over pairs in the force computation,
only sum neighbours i.e., particles in the same cell
or in adjacent cells.

For systems with short-range interactions: O(N2)
→ O(N).

More refine divisions use Verlet neighbour lists.
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Long-range interaction

Gravity and electrostatics are examples of long range interactions that cannot be cut off without seriously
altering the physics.

Electrostatic is a very common non-bonded interaction in MD with charged or polar molecules.

Without a cut-off, computing the sum over pairs, or “Particle-Particle’ ’, O(N2) methods seem unavoidable.

However, not necessarily!

There exists special techniques such as

Barnes-Hut
Particle Mesh -Particle-Particle/Particle Mesh (P3M) or Ewald Sums.
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Barnes-Hut

Clump particles together in cells

Cells with too many particles are subdivided
(recursive)

Leads to a quad (2d) or octal (3d) tree

Pretend each box is one massive particle at the
centre to compute the force.

Or, more accurately, replace by a multipole expansion.
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Particle-Mesh

Choose rectangular mesh

Distribute masses (blue) to mesh vertices (black
circles)

Determine the gravitational potential using FFT:

∇2Φ = 4πGρ⇒ Φ̂ = −4πGρ̂
k2

The forces on the lattice are given by the ∇Φ in
real space, i.e, the fourier inverse of

F̂ = ikΦ̂ = −ik 4πGρ̂
k2

.

O(N logN).
The inverse FFT gives the force on the particles.
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Ewald Sums and P3M

Particle-Mesh is fast, but not very accurate.

This is because the short range part of the forces is poorly represented.

One can do better.

Idea of P3M or Ewald summation is to do an exact summation of forces with bodies nearby, and perform an
approximate calculation for bodies further away.

Ewald does not assign to grid, but pays for this: O(N3/2).

P3M still assigns masses to a regular grid, allowing for O(N logN) scaling.

It relies on being able to translate this separation of local and further-away in fourier space.
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Bonding interactions

The molecules in MD models typically have a substructure; they are composed of atoms that are held
together by bonding potentials

For linear molecules (where atoms are linked to one previous and one next atom), one can define potentials for
1) the distance between subsequent atoms along the chain
2) the bond angle θ between subsequent links along the chain
3) the torsion angles φ between subsequent link-pairs along the chain.
(1) is often so strong that the bonds vibrate at high frequency. This reduces the possible time step, so when bond

vibrations are not important, one replaces their potentials with a constraint, i.e., ri,i+1 = l, using Lagrange
multipliers.

Small molecules for which internal vibrations can be neglected, one can treat them as rigid bodies, with
orientation and internal angular momenta as additional variable in the algorithm.
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Requirements for MD time step algorithms

Efficiency

(we just took care of most of that with the cells, verlet lists, P3M and Ewald sums)

Accuracy

Mostly, we don’t want unphysical stuff like particle moving through each other.

Stability

Respect physical laws:
I Time reversal symmetry
I Conservation of energy
I Conservation of linear momentum
I Conservation of angular momentum
I Conservation of phase space volume

The most efficient algorithm is then the one that allows the largest possible time step for a given level of accuracy,
while maintaining stability and preserving conservation laws.
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Symplectic integrators

Momentum Verlet Scheme (first version)

rn+1 = rn + pn

m
h+ Fn

2mh2

pn+1 = pn + Fn+1 + Fn

2 h

The momentum rule appears to pose a problem since Fn+1 is required. But to compute Fn+1, we need only rn+1,
which is computed in the integration step as well.

Symplectic integrators

‘Symplectic’ means the approximate dynamics preserves some aspects of the original.

In particular, for small enough time steps, there’s approximate energy conservation, and a limit distribution
(⇒ no drift).
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Symplectic integrators
Momentum Verlet Scheme (second version)

The extra storage step can be avoided by introducing the half step momenta as intermediates:

pn+1/2 = pn + 1
2Fnh

rn+1 = rn +
pn+1/2

m
h

pn+1 = pn+1/2 + 1
2Fn+1h

Also nice and symmetric:

Half momentum step

Full position step

Half momentum step

First step the same as the last (with updated F).

Also called: Velocity Verlet and leapfrog.
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Example code: Serdy
Serdy is a C code that simulates a Lennard-Jones fluid (i.e. only non-bonded interactions - think noble gases
like Argon).

Serdy Code Modules
atom

defines a structure to hold each atom’s properties

system

defines a structure to hold system parameters.

lattice

creates points on a cubic lattice.

lcg

random number generator

cells

functions related to dividing the system into cells

forces

functions to compute the forces.

inifile

functions to deal with parameters

serdy

glues the components together
$ git clone https://gitrepos.scinet.utoronto.ca/public/serdy.git
$ cd serdy
$ make
$ make test
$
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