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Today’s class

Today we will discuss:

Fitting

Fourier transforms
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Fitting
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Fitting data

Common task in science is to fit data to a theoretical function.

Much of machine learning is a form of fitting.

Even for a simple case, how are we going about this numerically?
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First let’s generate some data

///@file lmdata.h
#ifndef LMDATAH
#define LMDATAH
#include <rarray>
#include <utility>
std::pair<rvector<double>,rvector<double>>
lmdata(int n, double xmin, double xmax, double a,

double b, double sigma, unsigned long s);
#endif

///@file lmdata.cpp
#include "lmdata.h"
#include <random>
std::pair<rvector<double>,rvector<double>>
lmdata(int n, double xmin, double xmax, double a,

double b, double sigma, unsigned long s)
{

std::mt19937 rng(s);
std::normal_distribution<> gaussian(0, sigma);
rvector<double> x = linspace(xmin, xmax, n);
rvector<double> y(n);
for (int i = 0; i < n; i++) {

y[i] = a*x[i] + b + gaussian(rng);
}
return {x,y};

}

///@file fitwgsl.cpp
#include "lmdata.h"
#include <fstream>
#include <gsl/gsl_fit.h>

int main() {
int n = 10;
double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
unsigned long int seed=13;
std::pair<rvector<double>,rvector<double>> xypair;
xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
rvector<double> x=xypair.first;
rvector<double> y=xypair.second;
// fit (x,y) to a linear model, write result to file

}

$ g++ -c -g -O2 -std=c++14 lmdata.cpp -o lmdata.o
$ g++ -c -g -O2 -std=c++14 fitwgsl.cpp -o fitwgsl.o
$ g++ -g lmdata.o fitwgsl.o -o fitwgsl -lgsl -lgslcblas
$ ./fitwgsl
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GSL fit details
From the GSL docs:
40.2.1 Linear regression with a constant term

The functions described in this section can be used to perform
least-squares fits to a straight line model, Y(c,x) = c_0 + c_1 x.

-- Function: int gsl_fit_linear (const double * x, const
size_t xstride, const double * y, const size_t ystride,
size_t n, double * c0, double * c1, double * cov00, double
* cov01, double * cov11, double * sumsq)

This function computes the best-fit linear regression coefficients
(‘c0’, ‘c1’) of the model Y = c_0 + c_1 X for the dataset (‘x’,
‘y’), two vectors of length ‘n’ with strides ‘xstride’ and
‘ystride’. The errors on ‘y’ are assumed unknown so the
variance-covariance matrix for the parameters (‘c0’, ‘c1’) is
estimated from the scatter of the points around the best-fit line
and returned via the parameters (‘cov00’, ‘cov01’, ‘cov11’). The
sum of squares of the residuals from the best-fit line is returned
in ‘sumsq’. Note: the correlation coefficient of the data can be
computed using gsl_stats_correlation(), it does not
depend on the fit.

(https://www.gnu.org/software/gsl/doc/html)

// fitwgsl.cpp
#include "lmdata.h"
#include <fstream>
#include <iostream>
#include <gsl/gsl_fit.h>
int main() {

int n = 10;
double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
unsigned long int seed=13;
std::pair<rvector<double>,rvector<double>> xypair;
xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
rvector<double> x=xypair.first, y=xypair.second;
// fit (x,y) to a linear model
double c0, c1, cov00, cov01, cov11, rss;
gsl_fit_linear(x.data(), 1, y.data(), 1,

x.size(), &c0, &c1,
&cov00, &cov01, &cov11, &rss);

std::cout << "a=" << c1 << std::endl;
std::cout << "b=" << c0 << std::endl;
// estimate some points
std::ofstream out("fit.dat");
out << "# x y yfit yerr" << std::endl;
for (int i = 0; i < x.size(); i++) {

double y, yerr;
gsl_fit_linear_est(x[i], c0, c1, cov00,

cov01, cov11, &y, &yerr);
out << x[i] << " " << y[i] << " "

<< y << " " << yerr << std::endl;
}

}

$ g++ -c -g -O2 -std=c++14 lmdata.cpp -o lmdata.o
$ g++ -c -g -O2 -std=c++14 fitwgsl.cpp -o fitwgsl.o
$ g++ -g lmdata.o fitwgsl.o -o fitwgsl -lgsl -lgslcblas
$ ./fitwgsl
a=2.32208
b=1.26666
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Result
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What did the GSL actually do?
We’ve got data (x and y pairs)

It’s assumed that there is an underlying linear relation between x and y, with parameters a and b, plus noise.

y = f(x; a, b) + ε = ax+ b+ ε

We need estimates for a and b.

With these estimates, one could predict y values given any other x values (“machine learning”).

If noise is normally distributed with the same variance independent of x, one can use the residuals, i.e. the
difference between the observed and the predicted values.

RSS(a, b) = [yi − f(xi; a, b)]2

GSL maximizes the likelihood of the data by minimizing the sum of the square of residuals:

a∗, b∗ = argmina,b RSS(a, b)

Model is linear in parameters = Ordinary Least Squares
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More components, non-linear fitting, . . .

Can generalize to incorporate error estimates in y.

Can generalize to incorporate error estimates in x.

Generalizes to forms are non-linear in x, but still linear in parameters.

Be careful using polynomial fits: easy to overfit.

For non-linear parameter forms, can still try to minimize least squares: need solving.

Can use different “cost functions” (RRS is sensitive to outliers).
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Least-squares and linear algebra
If our model f is linear in B parameters βj , i.e.:

f(x) =
B∑
j=1

βjfj(x)
(e.g. B = 2 f1 = 1, f2 = x, β1 = b, β2 = a)

Given N data points (xi, yi), we need to minimize:

N∑
i=1

‖yi −
B∑
j=1

fj(xi)βj‖2

View fj(xi) as a matrix with components Fji.

F has B rows and N columns.

Taking the derivative w.r.t βj gives:

FFTβ = Fy

Solving for β is linear algebra! We saw this already: (C)BLAS and LAPACK(E)!
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Least-squares and linear algebra

///@file fitlapack.cpp
#include <iostream>
#include <cblas.h>
#include <lapacke.h>
#include "lmdata.h"
int main()
{

int n = 10;
double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
unsigned long int seed=13;
std::pair<rvector<double>,rvector<double>> xypair;
xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
rvector<double> x=xypair.first, y=xypair.second;
// fit (x,y) to a linear model
int nterms = 2;
rmatrix<double> F(nterms,n);
rmatrix<double> FFt(nterms,nterms);
rvector<double> Fy(nterms);
int ipiv[nterms];

for (int i = 0; i < n; i++) {
F[0][i] = 1.0;
F[1][i] = x[i];

}
cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasTrans,

nterms, nterms, n,
1.0, F.data(), n, F.data(), n,
0.0, FFt.data(), nterms);

cblas_dgemv(CblasRowMajor, CblasNoTrans,
nterms, n,
1.0, F.data(), n,
y.data(), 1,
0.0, Fy.data(), 1);

rvector<double> resultcoef = Fy.copy();
LAPACKE_dgesv(LAPACK_ROW_MAJOR, nterms, 1,

FFt.data(), nterms,
ipiv, resultcoef.data(), 1);

std::cout << "a=" << resultcoef[1] << std::endl;
std::cout << "b=" << resultcoef[0] << std::endl;

}

$ g++ -c -g -O2 -std=c++14 fitlapack.cpp -o fitlapack.o
$ g++ -g lmdata.o fitlapack.o -o fitlapack -lopenblas
$ ./fitlapack
a=2.32208
b=1.26666
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Least-squares for frequency analysis

Your data may be a signal of which you only want to get rid of higher frequencies (noise).

Fitting to periodic functions may come to mind.

E.g.

y = β1 sin(ω1x) + β2 sin(ω2x) + . . .

Linear in βi, so we could do least squares.

However, this can lead to very oscillitory behavior to fit the data.

There’s a better way to do this.
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(Discrete) Fourier Transform
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Fourier Transform

In this part of the lecture, we will discuss:

The Fourier transform,

The discrete Fourier transform

The fast Fourier transform

Examples using the FFTW library
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Fourier Transform recap
Let f be a function of some variable x.

f(x) = e−|x|

Transform to a function f̂ of k:

f̂(k) ∝
∫
f(x) e±i k·x dx

f(x) = (1 + k2)−1

Inverse transformation:

f(x) ∝
∫
f̂(k) e∓i k·x dk
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Fourier Transform

Fourier made the claim that any function can be expressed as a harmonic series.

The FT is a mathematical expression of that.

Constitutes a linear (basis) transformation in function space.

Transforms from spatial to wavenumber, or time to frequency, etc.

Constants and signs are just convention.∗
∗ some restritions apply.
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Discrete Fourier Transform

C. F. Gauss

Given a set of n function values on a regular grid:

fj = f(j∆x)

Transform to n other values

f̂k =
n−1∑
j=0

fj e
± 2πi j k/n

Easily back-transformed:

fj = 1
n

n−1∑
j=0

f̂k e
∓ 2πi j k/n

Solution is periodic: f−k = fn−k. You run the risk of aliasing, as k is equivalent to k + `n. Cannot resolve
frequencies higher than k = n/2 (Nyquist).
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Slow Fourier Transform

f̂k =
n−1∑
j=0

fj e
± 2πi j k/n

Discrete fourier transform is a linear
transformation.

In particular, it’s a matrix-vector multiplication.

Naively, costs O(n2). Slow!
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Slow DFT

#include <complex>
#include <rarray>
#include <cmath>

typedef std::complex<double> complex;

void fft_slow(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{

int n = fhat.extent(0);
double v = (inverse?-1:1)*2*M_PI/n;
for (int k=0; k<n; k++)
{

fhat[k] = 0.0;
for (int m=0; m<n; m++) {

fhat[k] += complex(cos(v*k*m), sin(v*k*m)) * f[m];
}

}
}

Even Gauss realized O(n2) was too slow and came up with . . .
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Fast Fourier Transform

Derived in partial form several times before and even after Gauss, because he’d just written it in his diary in
1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea

Write each n-point FT as a sum of two n
2 point FTs.

Do this recursively 2 logn times.

Each level requires ∼ n computations: O(n logn) instead of O(n2).

Could as easily divide into 3, 5, 7, . . . parts.
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Fast Fourier Transform: How is it done?
Define ωn = e2πi/n.

Note that ω2
n = ωn/2.

DFT takes form of matrix-vector multiplication:

f̂k =
n−1∑
j=0

ωkjn fj

With a bit of rewriting (assuming n is even):

f̂k =
n/2−1∑
j=0

ωkjn/2 f2j︸ ︷︷ ︸
FT of even samples

+ ωkn

n/2−1∑
j=0

ωkjn/2 f2j+1︸ ︷︷ ︸
FT of odd samples

Repeat, until the lowest level (for n = 1, f̂ = f).

Note that a fair amount of shuffling is involved.
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Fast Fourier Transform: Already done!

We’ve said it before and we’ll say it again: Do not write your own: use existing libraries!

Why?

Because getting all the pieces right is tricky;

Getting it to compute fast requires intimate knowledge of how processors work and access memory;

Because there are libraries available.

Examples:
I FFTW3 (Faster Fourier Transform in the West, version 3)
I Intel MKL
I IBM ESSL

Because you have better things to do.
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Example of using a library: FFTW

Rewrite of previous (slow) ft to a fast one using fftw

#include <complex>
#include <rarray>
#include <fftw3.h>

typedef std::complex<double> complex;

void fft_fast(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{

int n = f.size();
fftw_plan p = fftw_plan_dft_1d(n,

(fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
inverse?FFTW_BACKWARD:FFTW_FORWARD,
FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);

}
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Inverse DFT

Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

fj = 1
n

n−1∑
k=0

f̂k e
∓ 2πi j k/n

Many implementations (almost all in fact) leave out the 1/n normalization.

FFT allows quick back-and-forth between x and k domain (or e.g. time and frequency domain).

Allows parts of the computation and/or analysis to be done in the most convenient or efficient domain.
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Working example

Create a 1d input signal: a discretized sinc(x) = sin(x)/x with 16384 points on the interval [-30:30].

Perform forward transform

Write to standard out

Compile, and linking to fftw3 library.

Continous FT of sinc(x) is the rectangle function:

rect(f) =
{

0.5 if ‖k‖ ≤ 1
0 if ‖k‖ > 1

up to a normalization.

Does it match?
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Code for the working example

//sincfftw.cpp
#include <iostream>
#include <complex>
#include <rarray>
#include <fftw3.h>
typedef std::complex<double> complex;
int main() {

const int n = 16384;
rvector<complex> f(n), fhat(n);
for (int i=0; i<n; i++) {

double x = 60*(i/double(n)-0.5); // x-range from -30 to 30
if (x!=0.0) f[i] = sin(x)/x; else f[i] = 1.0;

}
fftw_plan p = fftw_plan_dft_1d(n,

(fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);
for (int i=0; i<n; i++)

std::cout << f[i] << "," << fhat[i] << std::endl;
return 0;

}
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Compile, link, run, plot
$ module load gcc fftw anaconda3
$ g++ -std=c++14 -c -O2 sincfftw.cpp -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$ ./sincfftw > output.dat
$ ipython --pylab

>>> data = genfromtxt('output.dat')
>>> plot(data[:,0])
>>> figure()
>>> plot(data[:,2])
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Plots of the output, rewrapped

Pick the first and the last 30 points.
>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,2]
>>> y2=data[x2,2]
>>> figure()
>>> plot(hstack((y2,y1)))
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Undo phase factor due to shifting

>>> plot(hstack((y2,y1))*array([1,-1]*30)

We retrieved our rectangle function!
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Notes

Always create a plan first.

An fftw_plan contains all information necessary to compute the transform, including the pointers to the input
and output arrays.

Plans can be reused in the program, and even saved on disk!

When creating a plan, you can have FFTW measure the fastest way of computing dft’s of that size
(FFTW_MEASURE), instead of guessing (FFTW_ESTIMATE).

FFTW works with doubles by default, but you can install single precision too.

Ramses van Zon, Marcelo Ponce PHY1610: Fitting and Fourier Transforms March 4, 2021 30 / 34



Multidimensional transforms
In principle a straighforward generalization:

Given a set of n×m function values on a regular grid:

fab = f(a∆x, b∆y)

Transform these to n other values f̂kl

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e
± 2πi (a k+b l)/n

Easily back-transformed:

fab = 1
nm

n−1∑
k=0

m−1∑
l=0

f̂kl e
∓ 2πi (a k+b l)/n

Negative frequencies: f−k,−l = fn−k,m−l.
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Multidimensional FFT

We could successive apply the FFT to each dimension

This may require transposes, can be expensive.

Alternatively, could apply FFT on rectangular patches.

Mostly should let the libraries deal with this.

FFT scaling still n logn.
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Symmetries for real data

All arrays were complex so far.

If input f is real, this can be exploited.

f∗j = fj ↔ f̂k = f̂∗n−k

Each complex number holds two real numbers, but for the input f we only need n real numbers.

If n is even, the transform f̂ has real f̂0 and f̂n/2, and the values of f̂k > n/2 can be derived from the
complex valued f̂0<k<n/2: again n real numbers need to be stored.
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Symmetries for real data

A different way of storing the result is in “half-complex storage’ ’. First, the n/2 real parts of f̂0<k<n/2 are
stored, then their imaginary parts in reversed order.

Seems odd, but means that the magnitude of the wave-numbers is like that for a complex-to-complex
transform.

These kind of implementation dependent storage patterns can be tricky, especially in higher dimensions.
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