PHY1610: Fitting and Fourier Transforms

Ramses van Zon, Marcelo Ponce

March 4, 2021

Today's class

Today we will discuss:

- Fitting
- Fourier transforms

Fitting

Fitting data

- Common task in science is to fit data to a theoretical function.
- Much of machine learning is a form of fitting.
- Even for a simple case, how are we going about this numerically?

First let's generate some data

```
///@file lmdata.h
#ifndef LMDATAH
#define LMDATAH
#include <rarray>
#include <utility>
std::pair<rvector<double>,rvector<double>>
    lmdata(int n, double xmin, double xmax, double a,
            double b, double sigma, unsigned long s);
#endif
///@file lmdata.cpp
#include "lmdata.h"
#include <random>
std::pair<rvector<double>,rvector<double>>
    lmdata(int n, double xmin, double xmax, double a,
        double b, double sigma, unsigned long s)
{
    std::mt19937 rng(s);
    std::normal_distribution<> gaussian(0, sigma);
    rvector<double> x = linspace(xmin, xmax, n);
    rvector<double> y(n);
    for (int i = 0; i < n; i++) {
        y[i] = a*x[i] + b + gaussian(rng);
    }
    return {x,y};
}
```

```
///@file fitwgsl.cpp
#include "lmdata.h"
#include <fstream>
#include <gsl/gsl_fit.h>
int main() {
        int n = 10;
        double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
        unsigned long int seed=13;
        std::pair<rvector<double>,rvector<double>> xypair;
        xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
        rvector<double> x=xypair.first;
        rvector<double> y=xypair.second;
        // fit (x,y) to a linear model, write result to file
}
$ g++ -c -g -02 -std=c++14 lmdata.cpp -o lmdata.o
$ g++ -c -g -02 -std=c++14 fitwgsl.cpp -o fitwgsl.o
$ g++ -g lmdata.o fitwgsl.o -o fitwgsl -lgsl -lgslcblas
$ ./fitwgsl
```


GSL fit details

From the GSL docs:

40.2.1 Linear regression with a constant term

The functions described in this section can be used to perform least-squares fits to a straight line model, $Y(c, x)=c_{-} 0+c_{-} 1 \mathrm{x}$.
-- Function: int gsl_fit_linear (const double * x, const size_t xstride, const double * y, const size_t ystride, size_t n, double * c0, double * c1, double * cov00, double * cov01, double * cov11, double * sumsq)

This function computes the best-fit linear regression coefficients ('c0', ' $c 1$ ') of the model $Y=c_{-} 0+c_{-} 1 X$ for the dataset (' x ', ' y '), two vectors of length ' n ' with strides 'xstride' and 'ystride'. The errors on ' y ' are assumed unknown so the variance-covariance matrix for the parameters ('c0', 'c1') is estimated from the scatter of the points around the best-fit line and returned via the parameters ('cov00', 'cov01', 'cov11'). The sum of squares of the residuals from the best-fit line is returned in 'sumsq'. Note: the correlation coefficient of the data can be computed using gsl_stats_correlation(), it does not depend on the fit.

(https://www.gnu.org/software/gsl/doc/html)

```
$ g++ -c -g -02 -std=c++14 lmdata.cpp -o lmdata.o
$ g++ -c -g -02 -std=c++14 fitwgsl.cpp -o fitwgsl.o
$ g++ -g lmdata.o fitwgsl.o -o fitwgsl -lgsl -lgslcblas
$ ./fitwgsl
a=2.32208
b=1.26666
```

// fitwgsl.cpp
\#include "lmdata.h"
\#include <fstream>
\#include <iostream>
\#include <gsl/gsl_fit.h>
int main() \{
int $\mathrm{n}=10$;
double xmin=0.0, xmax=2.0, $a=2.5, b=1.0$, sigma $=0.3$; unsigned long int seed=13;
std::pair<rvector<double>,rvector<double>> xypair;
xypair $=$ lmdata(n, xmin, xmax, $a, ~ b, ~ s i g m a, ~ s e e d) ; ~$
rvector<double> x=xypair.first, y=xypair.second;
// fit (x,y) to a linear model
double c0, c1, cov00, cov01, cov11, rss;
gsl_fit_linear(x.data(), 1, y.data(), 1, x.size(), \&c0, \&c1, \&cov00, \&cov01, \&cov11, \&rss);
std::cout << "a=" << c1 << std::endl;
std::cout << "b=" << c0 << std::endl;
// estimate some points
std::ofstream out("fit.dat");
out << "\# x y yfit yerr" << std::endl;
for (int i = 0; i < x.size() ; i++) \{
double y, yerr;
gsl_fit_linear_est(x[i], c0, c1, cov00, cov01, cov11, \&y, \&yerr); out << x[i] << " " << y[i] << " " << y << " " << yerr << std::endl;
\}

Result

What did the GSL actually do?

- We've got data (x and y pairs)
- It's assumed that there is an underlying linear relation between x and y, with parameters a and b, plus noise.

$$
y=f(x ; a, b)+\varepsilon=a x+b+\varepsilon
$$

- We need estimates for a and b.
- With these estimates, one could predict y values given any other x values ("machine learning").
- If noise is normally distributed with the same variance independent of x, one can use the residuals, i.e. the difference between the observed and the predicted values.

$$
\operatorname{RSS}(a, b)=\left[y_{i}-f\left(x_{i} ; a, b\right)\right]^{2}
$$

- GSL maximizes the likelihood of the data by minimizing the sum of the square of residuals:

$$
a^{*}, b^{*}=\operatorname{argmin}_{a, b} \operatorname{RSS}(a, b)
$$

- Model is linear in parameters = Ordinary Least Squares

More components, non-linear fitting, . . .

- Can generalize to incorporate error estimates in y.
- Can generalize to incorporate error estimates in x.
- Generalizes to forms are non-linear in x, but still linear in parameters.
- Be careful using polynomial fits: easy to overfit.
- For non-linear parameter forms, can still try to minimize least squares: need solving.
- Can use different "cost functions" (RRS is sensitive to outliers).

Least-squares and linear algebra

- If our model f is linear in B parameters β_{j}, i.e.:

$$
f(x)=\sum_{j=1}^{B} \beta_{j} f_{j}(x) \quad\left(\text { e.g. } B=2 f_{1}=1, f_{2}=x, \beta_{1}=b, \beta_{2}=a\right)
$$

- Given N data points $\left(x_{i}, y_{i}\right)$, we need to minimize:

$$
\sum_{i=1}^{N}\left\|y_{i}-\sum_{j=1}^{B} f_{j}\left(x_{i}\right) \beta_{j}\right\|^{2}
$$

- View $f_{j}\left(x_{i}\right)$ as a matrix with components $F_{j i}$.
F has B rows and N columns.
- Taking the derivative w.r.t β_{j} gives:

$$
F F^{T} \beta=F y
$$

- Solving for β is linear algebra! We saw this already: (C)BLAS and LAPACK(E)!

Least-squares and linear algebra

```
```

///@file fitlapack.cpp

```
```

///@file fitlapack.cpp
\#include <iostream>
\#include <iostream>
\#include <cblas.h>
\#include <cblas.h>
\#include <lapacke.h>
\#include <lapacke.h>
\#include "lmdata.h"
\#include "lmdata.h"
int main()
int main()
{
{
int n = 10;
int n = 10;
double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
double xmin=0.0, xmax=2.0, a=2.5, b=1.0, sigma=0.3;
unsigned long int seed=13;
unsigned long int seed=13;
std::pair<rvector<double>,rvector<double>> xypair;
std::pair<rvector<double>,rvector<double>> xypair;
xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
xypair = lmdata(n, xmin, xmax, a, b, sigma, seed);
rvector<double> x=xypair.first, y=xypair.second;
rvector<double> x=xypair.first, y=xypair.second;
// fit (x,y) to a linear model
// fit (x,y) to a linear model
int nterms = 2;
int nterms = 2;
rmatrix<double> F(nterms,n);
rmatrix<double> F(nterms,n);
rmatrix<double> FFt(nterms,nterms);
rmatrix<double> FFt(nterms,nterms);
rvector<double> Fy(nterms);
rvector<double> Fy(nterms);
int ipiv[nterms];

```
```

 int ipiv[nterms];
    ```
```

```
for (int i = 0; i < n; i++) {
    F[0][i] = 1.0;
    F[1][i] = x[i];
}
cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasTrans,
nterms, nterms, n,
1.0, F.data(), n, F.data(), n,
0.0, FFt.data(), nterms);
cblas_dgemv(CblasRowMajor, CblasNoTrans,
nterms, n,
1.0, F.data(), n,
y.data(), 1,
0.0, Fy.data(), 1);
rvector<double> resultcoef = Fy.copy();
LAPACKE_dgesv(LAPACK_ROW_MAJOR, nterms, 1,
FFt.data(), nterms,
ipiv, resultcoef.data(), 1);
std::cout << "a=" << resultcoef[1] << std::endl;
std::cout << "b=" << resultcoef[0] << std::endl;
```

\$ g++ -c -g -02 -std=c++14 fitlapack.cpp -o fitlapack.o
\$ g++ -g lmdata.o fitlapack.o -o fitlapack -lopenblas
\$./fitlapack
$\mathrm{a}=2.32208$
$\mathrm{b}=1.26666$

Least-squares for frequency analysis

- Your data may be a signal of which you only want to get rid of higher frequencies (noise).
- Fitting to periodic functions may come to mind.
- E.g.

$$
y=\beta_{1} \sin \left(\omega_{1} x\right)+\beta_{2} \sin \left(\omega_{2} x\right)+\ldots
$$

- Linear in β_{i}, so we could do least squares.
- However, this can lead to very oscillitory behavior to fit the data.
- There's a better way to do this.

(Discrete) Fourier Transform

Fourier Transform

In this part of the lecture, we will discuss:

- The Fourier transform,
- The discrete Fourier transform
- The fast Fourier transform
- Examples using the FFTW library

SCiNet

Fourier Transform recap

- Let f be a function of some variable x.

- Transform to a function \hat{f} of k :

$$
\hat{f}(k) \propto \int f(x) e^{ \pm i k \cdot x} d x
$$

- Inverse transformation:

$$
f(x) \propto \int \hat{f}(k) e^{\mp i k \cdot x} d k
$$

Fourier Transform

- Fourier made the claim that any function can be expressed as a harmonic series.
- The FT is a mathematical expression of that.
- Constitutes a linear (basis) transformation in function space.
- Transforms from spatial to wavenumber, or time to frequency, etc.
- Constants and signs are just convention.*
* some restritions apply.

Discrete Fourier Transform

C. F. Gauss

- Given a set of n function values on a regular grid:

$$
f_{j}=f(j \Delta x)
$$

- Transform to n other values

$$
\hat{f}_{k}=\sum_{j=0}^{n-1} f_{j} e^{ \pm 2 \pi i j k / n}
$$

- Easily back-transformed:

$$
f_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_{k} e^{\mp 2 \pi i j k / n}
$$

- Solution is periodic: $f_{-k}=f_{n-k}$. You run the risk of aliasing, as k is equivalent to $k+\ell n$. Cannot resolve frequencies higher than $k=n / 2$ (Nyquist).

$$
\hat{f}_{k}=\sum_{j=0}^{n-1} f_{j} e^{ \pm 2 \pi i j k / n}
$$

- Discrete fourier transform is a linear transformation.
- In particular, it's a matrix-vector multiplication.
- Naively, costs $\mathcal{O}\left(n^{2}\right)$. Slow!

Slow DFT

```
#include <complex>
#include <rarray>
#include <cmath>
typedef std::complex<double> complex;
void fft_slow(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{
    int n = fhat.extent(0);
    double v = (inverse?-1:1)*2*M_PI/n;
    for (int k=0; k<n; k++)
    {
        fhat[k] = 0.0;
        for (int m=0; m<n; m++) {
            fhat[k] += complex(cos(v*k*m), sin(v*k*m)) * f[m];
        }
    }
}
```

Even Gauss realized $\mathcal{O}\left(n^{2}\right)$ was too slow and came up with ...

Fast Fourier Transform

- Derived in partial form several times before and even after Gauss, because he'd just written it in his diary in 1805 (published later).
- Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea

- Write each n-point FT as a sum of two $\frac{n}{2}$ point FTs.
- Do this recursively ${ }^{2} \log n$ times.
- Each level requires $\sim n$ computations: $\mathcal{O}(n \log n)$ instead of $\mathcal{O}\left(n^{2}\right)$.
- Could as easily divide into 3,5, 7, ... parts.

Fast Fourier Transform: How is it done?

- Define $\omega_{n}=e^{2 \pi i / n}$.
- Note that $\omega_{n}^{2}=\omega_{n / 2}$.
- DFT takes form of matrix-vector multiplication:

$$
\hat{f}_{k}=\sum_{j=0}^{n-1} \omega_{n}^{k j} f_{j}
$$

- With a bit of rewriting (assuming n is even):

$$
\hat{f}_{k}=\underbrace{\sum_{j=0}^{n / 2-1} \omega_{n / 2}^{k j} f_{2 j}}_{\text {FT of even samples }}+\omega_{n}^{k} \underbrace{\sum_{j=0}^{n / 2-1} \omega_{n / 2}^{k j} f_{2 j+1}}_{\text {FT of odd samples }}
$$

- Repeat, until the lowest level (for $n=1, \hat{f}=f$).
- Note that a fair amount of shuffling is involved.

Fast Fourier Transform: Already done!

We've said it before and we'll say it again: Do not write your own: use existing libraries!
Why?

- Because getting all the pieces right is tricky;
- Getting it to compute fast requires intimate knowledge of how processors work and access memory;
- Because there are libraries available.

Examples:

- FFTW3 (Faster Fourier Transform in the West, version 3)
- Intel MKL
- IBM ESSL
- Because you have better things to do.

Example of using a library: FFTW

Rewrite of previous (slow) ft to a fast one using fftw

```
#include <complex>
#include <rarray>
#include <fftw3.h>
typedef std::complex<double> complex;
void fft_fast(const rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{
    int n = f.size();
    fftw_plan p = fftw_plan_dft_1d(n,
                            (fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
                        inverse?FFTW_BACKWARD:FFTW_FORWARD,
        FFTW_ESTIMATE);
    fftw_execute(p);
    fftw_destroy_plan(p);
}
```


Inverse DFT

- Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

$$
f_{j}=\frac{1}{n} \sum_{k=0}^{n-1} \hat{f}_{k} e^{\mp 2 \pi i j k / n}
$$

Many implementations (almost all in fact) leave out the $1 / \mathrm{n}$ normalization.

- FFT allows quick back-and-forth between x and k domain (or e.g. time and frequency domain).
- Allows parts of the computation and/or analysis to be done in the most convenient or efficient domain.

Working example

- Create a 1d input signal: a discretized $\operatorname{sinc}(x)=\sin (x) / x$ with 16384 points on the interval [-30:30].
- Perform forward transform
- Write to standard out
- Compile, and linking to fftw3 library.
- Continous FT of $\operatorname{sinc}(x)$ is the rectangle function:

$$
\operatorname{rect}(f)= \begin{cases}0.5 & \text { if }\|k\| \leq 1 \\ 0 & \text { if }\|k\|>1\end{cases}
$$

up to a normalization.

- Does it match?

Code for the working example

```
//sincfftw.cpp
#include <iostream>
#include <complex>
#include <rarray>
#include <fftw3.h>
typedef std::complex<double> complex;
int main() {
    const int n = 16384;
    rvector<complex> f(n), fhat(n);
    for (int i=0; i<n; i++) {
        double x = 60*(i/double(n)-0.5); // x-range from -30 to 30
        if (x!=0.0) f[i] = sin(x)/x; else f[i] = 1.0;
    }
    fftw_plan p = fftw_plan_dft_1d(n,
                            (fftw_complex*)f.data(), (fftw_complex*)fhat.data(),
                            FFTW_FORWARD, FFTW_ESTIMATE);
    fftw_execute(p);
    fftw_destroy_plan(p);
    for (int i=0; i<n; i++)
        std::cout << f[i] << "," << fhat[i] << std::endl;
    return 0;
}
```


Compile, link, run, plot

```
$ module load gcc fftw anaconda3
$ g++ -std=c++14 -c -02 sincfftw.cpp -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$ ./sincfftw > output.dat
$ ipython --pylab
```


>>> data $=$ genfromtxt('output.dat')
>>> plot(data[:,0])
>>> figure()
>>> plot(data[:,2])

Plots of the output, rewrapped

Pick the first and the last 30 points.

```
>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,2]
>>> y2=data[x2,2]
>>> figure()
>>> plot(hstack((y2,y1)))
```


Undo phase factor due to shifting

```
>>> plot(hstack((y2,y1))*array([1, -1]*30)
```

We retrieved our rectangle function!

Notes

- Always create a plan first.
- An fftw_plan contains all information necessary to compute the transform, including the pointers to the input and output arrays.
- Plans can be reused in the program, and even saved on disk!
- When creating a plan, you can have FFTW measure the fastest way of computing dft's of that size (FFTW_MEASURE), instead of guessing (FFTW_ESTIMATE).
- FFTW works with doubles by default, but you can install single precision too.

Multidimensional transforms

In principle a straighforward generalization:

- Given a set of $n \times m$ function values on a regular grid:

$$
f_{a b}=f(a \Delta x, b \Delta y)
$$

- Transform these to n other values $\hat{f}_{k l}$

$$
\hat{f}_{k l}=\sum_{a=0}^{n-1} \sum_{b=0}^{m-1} f_{a b} e^{ \pm 2 \pi i(a k+b l) / n}
$$

- Easily back-transformed:

$$
f_{a b}=\frac{1}{n m} \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \hat{f}_{k l} e^{\mp 2 \pi i(a k+b l) / n}
$$

- Negative frequencies: $f_{-k,-l}=f_{n-k, m-l}$.

Multidimensional FFT

- We could successive apply the FFT to each dimension
- This may require transposes, can be expensive.
- Alternatively, could apply FFT on rectangular patches.
- Mostly should let the libraries deal with this.
- FFT scaling still $n \log n$.

Symmetries for real data

- All arrays were complex so far.
- If input f is real, this can be exploited.

$$
f_{j}^{*}=f_{j} \leftrightarrow \hat{f}_{k}=\hat{f}_{n-k}^{*}
$$

- Each complex number holds two real numbers, but for the input f we only need n real numbers.
- If n is even, the transform \hat{f} has real \hat{f}_{0} and $\hat{f}_{n / 2}$, and the values of $\hat{f}_{k}>n / 2$ can be derived from the complex valued $\hat{f}_{0<k<n / 2}$: again n real numbers need to be stored.

Symmetries for real data

- A different way of storing the result is in "half-complex storage' . First, the $n / 2$ real parts of $\hat{f}_{0<k<n / 2}$ are stored, then their imaginary parts in reversed order.
- Seems odd, but means that the magnitude of the wave-numbers is like that for a complex-to-complex transform.
- These kind of implementation dependent storage patterns can be tricky, especially in higher dimensions.

