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Today’s class

Today we will discuss the following topics:

Basic approaches to solving PDEs.

How to approach the temporal part of the equations.

How to approach the spatial part of the equations.
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Numerical Methods

Finite Differences  (eg. matrix representation –stencil–, stability analysis,
eigenvalues,...) ⇒ Lineal Algebra

Spectral Methods⇒ FFT

Implict Methods⇒ Root Finding

Integration⇒ Random Numbers & Monte Carlo

Special Functions (eg. Green functions)
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Partial Differential Equations

Partial differential equations (PDEs) are differential equations which contain derivatives of
more than one variable.

A
∂2Φ

∂x2
+B

∂2Φ

∂x∂y
+ C

∂2Φ

∂y2
= G

(
x, y,Φ,

∂Φ

∂x
,
∂Φ

∂y

)
For A,B,C constant, three classes of PDEs show up repeatedly in physical systems.

B2 − 4AC < 0 – elliptic (Laplace’s, Poisson equations).

B2 − 4AC = 0 – parabolic (Diffusion equation, Navier-Stokes).

B2 − 4AC > 0 – hyperbolic (Wave equation).

If there are packages that can solve PDEs in your field, then explore using them. However,
writing your own is sometimes not a bad option.
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How do we solve these problems?

Let’s take a look at a parabolic equation, in particular the heat equation (diffusion equation).

∂T

∂t
= k

∂2T

∂x2
,

where T is the temperature and k is the thermal diffusivity.

How do we solve this equation? By discretizing in both space and time, and marching an
initial condition forward in time.

This is similar to the initial-value problem in the ODEs, but in this case we have another
derivative to deal with.
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Dealing with time

If we rewrite the right-hand side as an operator:

∂T

∂t
= k

∂2T

∂x2
→

∂T

∂t
= FT

we have two basic approaches to dealing with the time part of the equation:

Explicit methods, such as forward Euler:

Ti+1 − Ti
∆t

= FTi → Ti+1 = (1 + ∆tF )Ti

Implicit methods, such as backward Euler:

Ti+1 − Ti
∆t

= FTi+1 → (1−∆tF )Ti+1 = Ti
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Explicit Methods
Methods are called explicit when only Ti is on the right side of the equation. Explicit methods
have some nice features:

They are easy to implement.

They are usually quick to calculate (no matrix inversions).

Easier to parallelize, since the calculation is inherently local.

There exist more-accurate explicit methods than forward Euler (Runge-Kutta, for
example).

Ti+1 − Ti
∆t

= FTi → Ti+1 = (1 + ∆tF )Ti

But there are some serious downsides as well:

They are not very accurate at low order (O(∆t) for forward Euler).

They can be numerically unstable (though there are
exceptions).
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Implicit methods
Methods are called implicit when Ti+1 is on both sides of the equation. Examples include
backward Euler:

Ti+1 − Ti
∆t

= FTi+1 O(∆t)

and Crank-Nicolson:

Ti+1 − Ti
∆t

= (FTi+1 + FTi)/2 O(∆t2)

Implicit time stepping methods have some nice features:

They are stable over a wide range of timestep sizes, sometimes unconditionally (not
unconditionally accurate, though).

Excellent for solving steady-state problems.

Downsides include being more difficult to code, and much more difficult to parallelize
(inverting the operator depends upon all grid points).
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Dealing with space

We’ve talked about time. Now, what about space? How can we deal with the spatial aspects
of the problem? How should set up our spatial discretization?

There are many different approaches one can take when dealing with fields.

Finite difference methods.

Finite volume methods.

Finite element methods.

Spectral methods.

And combinations thereof. How you set up your discretization will determine the structure of
your F operator.
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Finite difference methods

Finite difference methods are the simplest way to deal with your equations.

The simulation domain is discretized.

Derivatives are approximated by linear combinations of function values at the grid points.

We’ve used ’central differences’ before, to calculate our second derivatives. Where did that
come from?

∂2Tj

∂x2
=
Tj+1 − 2Tj + Tj−1

∆x2

Where j is the index of the x grid, and ∆x is the spacing in x.
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Calculating derivatives

We need to calculate the second spatial derivatives. How best to do that? We discretize the x
domain, and examine the Taylor expansion of some function f , centered around three different
points:

˝

j − 2 j − 1 j j + 1 j + 2

f(xj−1) = f(xj)− (∆x)
∂f(xj)

∂x
+

(∆x)2

2!

∂2f(xj)

∂x2
+O(∆x3)

f(xj) = f(xj)

f(xj+1) = f(xj) + (∆x)
∂f(xj)

∂x
+

(∆x)2

2!

∂2f(xj)

∂x2
+O(∆x3)

Where ∆x = xj − xj−1.

M.Ponce/R.Van Zon (Scinet HPC @ UofT) PHY1610H: PDEs February, 2021 11 / 33



Calculating derivatives, continued
We can write this as a matrix operation:f(xj−1)

f(xj)
f(xj+1)

 =

1 −∆x ∆x2

2
1 0 0

1 ∆x ∆x2

2


 f(xj)
f ′(xj)
f ′′(xj)


To get the answer we invert the matrix:

f(xj)

f ′(xj)

f ′′(xj)

 =


0 1 0

−1
2∆x

0 1
2∆x

1
∆x2

−2
∆x2

1
∆x2



f(xj−1)

f(xj)

f(xj+1)


f ′(xj) =

∂f(xj)

∂x
=
f(xj+1)− f(xj−1)

2∆x

f ′′(xj) =
∂2f(xj)

∂x2
=
f(xj+1)− 2f(xj) + f(xj−1)

∆x2
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Discretizing our equation

Let us discretize the variable T in both time and space, with T (ti, xj) = Ti,j . This then
gives us

∂T

∂t
= k

∂2T

∂x2
,

∂Ti,j

∂t
= k

∂2Ti,j

∂x2
,

= k

[
Ti,j+1 − 2Ti,j + Ti,j−1

∆x2

]
.
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Discretizing our equation, continued
∂Ti,j

∂t
= k

[
Ti,j+1 − 2Ti,j + Ti,j−1

∆x2

]
If we write Ti,j as a vector of values, we can rewrite our equation as a matrix operation. Note
that there is one equation for each spatial point:

∂

∂t



...
Ti,17

Ti,18

Ti,19

Ti,20

Ti,21
...


= k



...

. . . 1
∆x2

−2
∆x2

1
∆x2 0 0 . . .

. . . 0 1
∆x2

−2
∆x2

1
∆x2 0 . . .

. . . 0 0 1
∆x2

−2
∆x2

1
∆x2 . . .

...





...
Ti,17

Ti,18

Ti,19

Ti,20

Ti,21
...


Which we can write as

∂ ~Ti

∂t
= F ~Ti.
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What about the edges?

The edges are a problem. Why? Well, consider the first point, j = 0:

∂Ti,0

∂t
= k

[
Ti,1 − 2Ti,0 + Ti,−1

∆x2

]
There is no j = −1 point!

The solution is to not use the above equation to describe the edge points. Use a different
equation instead. These are known as ’boundary conditions’; there are two general classes:

Dirichlet: constant boundary value.

Neumann: boundary values based on derivatives of the boundary values themselves.

How these conditions are implemented depends on the approach to solving the equation that
is being used.
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Example problem

Suppose we have a rod, of length 1, whose temperature T (t, x) is subject to the boundary
conditions:

sin(10t) x = 0,

0.0 x = 1.

The thermal diffusivity is k = 0.2. Assume there are n = 100 spatial points. Show how the
temperature evolves in time and space.

How should we solve this problem? We could use explicit or implicit methods. Today we will
just use explicit methods.
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Using the explicit method

As mentioned previously, explicit methods can be unstable. Let’s see how it performs in this
case. This is the implicit version of the equation:

~Ti+1 − ~Ti

∆t
= F ~Ti+1.

This is the explicit version:

~Ti+1 − ~Ti

∆t
= F ~Ti,

~Ti+1 = ~Ti + ∆tF ~Ti,

~Ti+1 = (1 + ∆tF ) ~Ti.

Where 1 is the identity matrix.
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Implementing boundary conditions

The boundary conditions are implemented by modifying the operator F .

~Ti+1 = (1 + ∆tF ) ~Ti

The equation for the boundary condition at j = 0 (Ti+1,0 = sin(10ti+1)) is implemented
by: 

Ti+1,0

Ti+1,1

Ti+1,2
...

 =


1 0 0 0 0 . . .

α 1− 2α α 0 0 . . .

0 α 1− 2α α 0 . . .

...




sin(10ti+1)

Ti,1

Ti,2
...


Where we have used the definition: α = ∆tk/(∆x2).
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Implementing the other boundary condition

~Ti+1 = (1 + ∆tF ) ~Ti

We are assuming that there are 100 points in x. The boundary condition equation at x = 1
(Ti+1,99 = 0.0) is implemented similarly:

...

Ti+1,96

Ti+1,97

Ti+1,98

Ti+1,99


=



...

. . . α 1− 2α α 0 0

. . . 0 α 1− 2α α 0

. . . 0 0 α 1− 2α α

. . . 0 0 0 0 1





...

Ti,97

Ti,97

Ti,98

0.0
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Coding our example
#include <cmath>

#include <cblas.h>

int main() {
double k = 0.2;

double runtime = 2.0;

int n = 100;

double dx = 1.0 / (n - 1);

double dt = 0.0005;

int nsteps = runtime / dt;

double a = 1.0, b = 0.0;

double alpha = dt * k / dx**2;

double *T = new double[n];

double *rhs = new double[n];

double **F = new double *[n];

F[0] = new double[n * n];

for(int i = 1; i < n; i++)

F[i] = &F[0][i * n];

for(int i = 0; i < n; i++) {
T[i] = 0.0; rhs[i] = 0.0;

for(int j = 0; j < n; j++)

F[i][j] = 0.0;}

for (int i = 0; i < n; i++)

if (i == 0) F[i][i] = 1.0;

if ((i > 0) && (i < (n - 1))) {
F[i][i-1] = alpha; F[i][i+1] = alpha;

F[i][i] = 1.0 - 2.0 * alpha;

} F[i][i] = 1.0;

for (int s = 1; i <= nsteps; s++) {
double *temp = rhs; rhs = T; T = temp;

rhs[0] = sin(dt * s * 10);

rhs[n - 1] = 0.0;

cblas dgemv(CblasRowMajor, CblasNoTrans,

n, n, a, F[0], n, rhs, 1, b, T, 1);

// Output the result.

} // Deallocate. return 0;}
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Explicit results

There’s a problem here.
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What happened?
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What went wrong?
Consider a 5-point version of the problem, given by the operator below.

Ti+1,0

Ti+1,1

Ti+1,2

Ti+1,3

Ti+1,4


=



1 0 0 0 0

α 1− 2α α 0 0

0 α 1− 2α α 0

0 0 α 1− 2α α

0 0 0 0 1





sin(10ti+1)

Ti,1

Ti,2

Ti,3

0


What are the conditions for this to be stable?
We require the eigenvalues of the operator |λ| ≤ 1, and thus α = ∆tk

∆x2 ≤ 0.5. Which gives

∆t ≤
∆x2

2k

If you double the spatial resolution, you need to quadruple the temporal resolution, for stability.
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Can we save it?
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Yes, we just need to pick a better value of α.
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Notes about this implementation

A few things to recognize about this implementation:

The code allocates and fills the entire matrix. Most of the matrix is zeros.

This is a good way to implement things initially, for testing. It is not a good way to do
things for production.

Why? Because in this case the matrix is banded, and so a routine for a banded matrix
should have been used to solve this problem.

Who cares? Banded routines are faster and use much much less memory. Use them!

Downside: banded matrices are a little more complicated to store, which is why we test
them against the full matrix.
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Banded-matrix storage

So how are banded matrices stored?



1 0 0 0 0

α 1− 2α α 0 0

0 α 1− 2α α 0

0 0 α 1− 2α α

0 0 0 0 1




0 0 α α α

1 1− 2α 1− 2α 1− 2α 1

α α α 0 0
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Finite volume methods

Finite volume methods are based on the discretization of the integral form of the equations,
rather than the differential form.

Convert all divergences into fluxes through the surfaces of each volume.

Create a grid on which we will evaluate our fields. ”Finite volume” refers to the small
volume of space which surrounds each grid point. These are called ”control volumes”
(CVs).

Discretize the equations on the CVs.

Solve. Make sure your fluxes balance.
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Finite volume methods, continued

So what have you done to the equations?

∂T

∂t
= k∇2T = k (∇ · ∇T )

∂

∂t

∫
TdV = k

∫
(∇ · ∇T ) dV

= k

∫
(∇T · n̂) dS

where we have used the divergence theorem, and n̂ is the unit vector normal to the CV’s
surfaces.
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Finite volume methods, continued
∂

∂t

∫
TdV = k

∫
(∇T · n̂) dS

T is calculated at the center, ∇T at
the surfaces.

Assume constant T in the CV and
constant ∇T across the surface.

Dot ∇T with the normal vectors n̂.

Here (i, j) refers to (x, y) indices.

(i, j) (i + 1, j)(i − 1, j)

(i, j + 1)

(i, j − 1)

n̂ n̂

n̂

n̂

∆x2∂T

∂t
= k

[(
Ti,j − Ti−1,j

∆x

)
(−1) +

(
Ti+1,j − Ti,j

∆x

)
+(

Ti,j − Ti,j−1

∆x

)
(−1) +

(
Ti,j+1 − Ti,j

∆x

)]
∆x

= k (Ti−1,j + Ti,j−1 + Ti+1,j + Ti,j+1 − 4Ti,j)
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Advantages of finite volume methods

Finite volume methods have a number of advantages:

The methods ensure that all quantities are conserved, both locally and globally, assuming
that all surface fluxes balance.

The methods are easily adapted to irregular meshes, or unstructured meshes (arbitrary
polyhedra or polygons).

The methods can be especially powerful in cases where the mesh moves or adapts to the
simulation.

For the case where the grid is uniform, the finite volume method reduces to the finite
difference method, as seen on the previous slide.
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Spectral methods
Spectral methods involve expanding fields in terms of some orthogonal basis set. Sinusoids are
often use in situations which are periodic (periodic boxes):

T (t, x) =

nmax∑
n=0

an(t) sin

(
2πnx

L

)
+ bn(t) cos

(
2πnx

L

)
For 0 ≤ x ≤ L.

If your geometry is spherical, you might expand in spherical harmonics:

T (t, r, θ, φ) =
∑
l,m

al,m(t, r)Yl,m(θ, φ)

You might also expand your r dependence spectrally:

T (t, r, θ, φ) =
∑
l,m,α

al,m,α(t)Nα(r)Yl,m(θ, φ)
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Why would you do that?

There are a number of reasons why you might solve your equations spectrally:

The equations may be easier to solve, especially if the operators are eigenfunctions of the
basis in question.

The expansions are global in nature. If your boundary conditions are global (such as
magnetic boundary condtions), this may be the only way to easily satisfy them.

They can be very accurate, in certain cases converging exponentially to exact solutions.

Because they are accurate, fewer grid points are needed, resulting in less memory being
needed.

If conversion between real-space and spectral-space is needed to be regularly performed as
part of the algorithm, advanced algorithms exists for some of these transforms (FFTs).

M.Ponce/R.Van Zon (Scinet HPC @ UofT) PHY1610H: PDEs February, 2021 32 / 33



Why wouldn’t you do that?

Spectral methods have some downsides as well:

The implementations can be more difficult to code.

Because the expansions are global in nature, the domain needs to match the expansion
basis. Complicated geometries lose accuracy, since the expansion must be long.

Nonlinear terms can be very slow to be calculated.
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