
PHY1610H - Scientific Computing: Testing and Debugging

Ramses van Zon & Marcelo Ponce

SciNet HPC Consortium

February, 2021

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 1 / 25

Motivation

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 2 / 25

Three bits of reality about scientific software:

Scientific software can be large, complex and subtle.

Scientific software is constantly evolving.

Code will be handed down, shared, reused.

Example of this complexity
Let’s consider a typical code to simulate a wave equation in one dimension. In principle, it will have to

1 Read parameters;
2 Set initial conditions;
3 Compute the evolution of the wave in time;
4 Output the result.

At some point in a research project, initial conditions may need to change, or the output, or the algortihm
to compute the time evolution, . . .

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 3 / 25

Managing complexity using modularity

Modularity is extracing the different parts of the program that are responsible for different things.

Each of these should be fairly independent.

Implementation changes of one module should not affect other modules.

Each part can be maintained by a different person.

Once a part is working well, it can be used as an appliance.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 4 / 25

Questions

1 How do we ensure a module works correctly?
⇒ Unit testing

2 What if we find that it doesn’t?
⇒ Debugging

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 5 / 25

Unit testing

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 6 / 25

Integrated testing

Especially with new software, or old software
that was modified, you’ll want to verify that it
“works”.

Test the application with a smaller test case
for which you know that output

This can strictly only prove incorrectness (no
tests can prove correctness).

But if no errors are found, it increases your
level of confidence in the software.

OUT

IN

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 7 / 25

Unit testing

The integrated test essentially gives you one
data point.

If you’ve modularized the code into n parts,
you should have at least n data points to
know that the parts aren’t failing.

Because each module has one responsibility,
you can write a test for each module.

If the test for a module fails, you only need to
inspect that module, not the whole code of the
application.

Note that if you did not modularize, everything
is connected, you could not have n test this.
And when the integrated test fails, the error
could be anywhere in the code.

IN OUT

IN OUT

OUTIN

IN

IN

OUT

OUT

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 8 / 25

Example from lecture 3 (unmodular)
// hydrogen_monolyth.cc
#include <rarray>
#include <iostream>
#include <fstream>
#include <cmath>
const int n = 100;
rmatrix<double> m(n,n);
rvector<double> a(n);
void pw() {

rvector<double> q(n);
q.fill(0.0);
for (int i=0;i<n;i++)

for (int j=0;j<n;j++)
q[i] += m[i][j]*a[i];

a = q.copy();
}
double en() {

rvector<double> q(n);
q.fill(0.0);
for (int i=0;i<n;i++)

for (int j=0;j<n;j++)
q[i] += m[i][j]*a[i];

double e=0.0, z=0.0;
for (int i=0;i<n;i++) {

e += a[i] * q[i];
z += a[i] * a[i];

}

return e/z;
}
int main() {

a.fill(1);
for (int i=0;i<n;i++)

for (int j=0;j<n;j++)
m[i][j] = 1.0/(1.0+fabs(i*i-j*j));

double b = 0;
for (int i=0; i<n; i++)

if (m[i][i]>b)
b = m[i][i];

for (int i=0; i<n; i++)
m[i][i] -= b;

for (int p=0;p<10;p++)
pw();

for (int i=0; i<n; i++)
m[i][i] += b;

std::cout<<"Ground state energy is "<<en()<<std::endl;
std::ofstream f("data.txt");
for (int i=0; i<n; i++)

f << a[i] << std::endl;
std::ofstream g("data.bin",std::ios::binary);
g.write((char*)(a.data()),a.size()*sizeof(a[0]));
return 0;

}

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 9 / 25

Example from lecture 3 (modular)
// hydrogen.cc
#include <rarray>
#include <iostream>
#include "outputarr.h"
#include "initmat.h"
#include "eigenvals.h"
int main() {

const int n = 100;
rmatrix<double> m(n,n);
rvector<double> a(n);
initmat(m);
double en = ground_state(m,a);
std::cout<<"Ground state energy is "<<en<<std::endl;
toAsc("data.txt", a);
toBin("data.bin", a);
return 0;

}

Makefile
CXXFLAGS=-g -std=c++14
all: hydrogen
hydrogen.o: hydrogen.cc eigenvals.h outputarr.h initmat.h
outputarr.o: outputarr.cc outputarr.h
initmat.o: initmat.cc initmat.h
eigenvals.o: eigenvals.cc eigenvals.h
hydrogen: hydrogen.o initmat.o eigenvals.o outputarr.o

$(CXX) -g -o hydrogen hydrogen.o initmat.o eigenvals.o outputarr.o

// outputarr.h
#ifndef OUTPUTARR_H
#define OUTPUTARR_H
#include <string>
#include <rarray>
void toBin(std::string& s, rarray<double,1>& x);
void toAsc(std::string& s, rarray<double,1>& x);
#endif

// outputarr.cc
#include "outputarr.h"
#include <fstream>

void toBin(std::string& s, rarray<double,1>& x) {
std::ofstream g(s,std::ios::binary);
g.write((char*)(x.data()),x.size()*sizeof(x[0]));
g.close();

}

void toAsc(std::string& s, rarray<double,1>& x) {
std::ofstream f(s);
for (int i=0; i<x.size(); i++)

f << x[i] << std::endl;
f.close();

}

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 10 / 25

Example: integrated test for hydrogen
Save the original (monolythic) code, and run it, moving output to other file:

$ g++ -std=c++14 -o hydrogen_monolythic hydrogen_monolythic.cc
$./hydrogen_monolythic > hydrogen_monolythic.out
$ mv data.bin data_monolythic.bin
$ mv data.txt data_monolythic.txt

Run the modular code:

$ make hydrogen
$./hydrogen > hydrogen.out

Compare the output:

$ diff hydrogen.out hydrogen_monolythic.out
$ diff data.txt data_monolythic.txt
$ cmp data.bin data_monolythic.bin

This is a very good idea when modularizing code, because you cannot do unit tests yet.
Warning: the byte-for-byte comparison can break for floating point numbers.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 11 / 25

Example: unit test for outputarr module

// outputarr_test.cc
#include "outputarr.h"
#include <iostream>
#include <fstream>
int main() {

std::cout << "UNIT TEST FOR FUNCTION 'toAsc'\\n";
// create file:
rvector<double> a(3);
a = 1,2,3;
toAsc("testoutputarr.txt", a);
// read back:
std::ifstream in("testoutputarr.txt");
std::string s1,s2,s3;
in >> s1 >> s2 >> s3;
// check:
if (s1!="1" or s2!="2" or s3!="3") {

std::cout << "TEST FAILED\n";
return 1;

} else {
std::cout << "TEST PASSED\n";
return 0;

}
}

Add to makefile:

#Makefile
...
test: outputarr_test

./outputarr_test
outputarr_test: outputarr_test.o outputarr.o

$(CXX) -g -o outputarr_test outputarr_test.o outputarr.o
outputarr_test.o: outputarr_test.cc outputarr.h

To run:

$ make test
g++ -g -std=c++14 -c -o outputarr_test.o outputarr_test.cc
g++ -o outputarr_test outputarr_test.o outputarr.o
./outputarr_test
UNIT TEST FOR FUNCTION 'toAsc'
TEST PASSED
$ echo $?
0

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 12 / 25

Guidelines for testing

Each module should have a separate test suite
(so outputarr test.cc should also have a test for toBin).

If the code is properly modular, those module test should not need any of the other .cc files.

Testing will give confidence in your module, and will tell you which modules have stopped working
properly.

Once your tests are okay, you now have a piece of code that you could easily use in other
applications as well, and which you can comfortably share.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 13 / 25

Testing frameworks

There’s a lot of extra coding here just to run the tests.

The tests need to be maintained as well.

Especially when your project contains a lot of tests, you may want to use a unit testing framework.

Examples:
I Boost.Test (from the Boost library suite)
I Google C++ Testing Framework (a.k.a googletest)
I . . .

These are typically combinations of macros, a driver main function that can select which tests to run,
etc.

For the assignment, if you’re going to use a framework, use Boost.Test.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 14 / 25

Example of Boost.Test

// output_bt.cc
#include "outputarr.h"
#include <iostream>
#include <fstream>
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE output_bt
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_CASE(toAsc_test)
{

// create file:
rvector<double> a(3);
a = 1,2,3;
toAsc("testoutputarr.txt", a);
// read back:
std::ifstream in("testoutputarr.txt");
std::string x,y,z;
in >> x >> y >> z;
// check:
BOOST_CHECK(x=="1"&&y=="2"&&z=="3");

}

$ g++ -std=c++14 -g -c output_bt.cc
$ g++ -g -o output_bt output_bt.o outputarr.o\

-lboost_unit_test_framework
$./output_bt --log-level all

Running 1 test case...
Entering test suite "output_bt"
Entering test case "toAsc_test"
output_bt.cc(19): info: check x=="1"&&y=="2"&&z=="3" passed
Leaving test case "toAsc_test"; testing time: 1036mks
Leaving test suite "output_bt"

*** No errors detected

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 15 / 25

Debugging

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 16 / 25

What if your program or test isn’t running correctly. . .

Nonesense. All programs execute “correctly”.

We just told it to do the wrong thing.

Debugging is the art of reconciling your
mental model of what the code is doing with
what you actually told it to do.

http://imgs.xkcd.com/comics/debugger.png

Debugger: program to help detect errors in other programs.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 17 / 25

Tips to avoid debugging
Write better code.

I simple, clear, straightfoward code.
I modularity (avoid global variables and 10,000 line functions).
I avoid “cute tricks”, (no obfuscated C code winners – IOCCC).

Don’t write code, use existing libraries.

Write (simple) tests for each module.

Switch on the -Wall flag, inspect all warnings, fix them or understand them all.

Use defensive programming:
check arguments, use assert (which can be
switched of with -DNDEBUG).

#include <cassert>
#include <cmath>
float mysqrt(float x) {

assert(x>=0);
return sqrt(x);

}

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 18 / 25

Debugging workflows

As soon as you are convinced there is a real problem, create the simplest situation in which it
repeatedly occurs.

This is science: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off different physical effects with options, etc, until you have a
simple, fast, repeatable example.

Try to narrow it down to a particular module/function/class.

Integrated calculation: Write out intermediate results, inspect them.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 19 / 25

Despite that, still errors?
Some common issues:

Arithmetic Corner cases (sqrt(-0.0)), infinities
Memory access Index out of range, uninitialized pointers.
Logic Infinite loop, corner cases
Misuse Wrong input, ignored error, no initialization
Syntax Wrong operators/arguments
Resource starvation memory leak, quota overflow
Parallel race conditions, deadlock

To figure out what is going wrong, and where in the code, we can

1 Put strategic print statements in the code.
2 Use a debugger.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 20 / 25

What’s wrong with using print statements?
Strategy

Constant cycle:
I strategically add print statements
I compile
I run
I analyze output
I repeat

Removing the extra code after the bug is fixed

Repeat for each bug. . .

Problems with this approach
Time consuming
Error prone
Changes memory, timing. . .

There’s a better way!

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 21 / 25

Debuggers

Features
1 Crash inspection
2 Function call stack
3 Step through code
4 Automated interruption
5 Variable checking and setting

Use a graphical debugger or not?
Local work station: graphical is convenient

Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same concepts.

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 22 / 25

Debuggers
Preparing the executable

Add required compilation flags:

$ g++ -g -gstabs code.cc -o app

Optional: switch off optimization -O0

Command-line based symbolic debuggers: gdb
Free, GNU license, symbolic debugger.

Available on many systems.

Been around for a while, but still developed and up-to-date

Text based, but has a ‘-tui’ option.

$ gdb app
...
(gdb)_

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 23 / 25

GDB command summary
help h print description of command
run r run from the start (+args)
backtrace/where ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
list l print part of the code
step s step into function
next n continue until next line
print p print variable
display disp print variable at every prompt
finish fin continue until function end
set variable set var change variable
down do go to called function
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

Demonstration:

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 24 / 25

Graphical debuggers

DDD: free, bit old, can do serial and threaded
debugging.

DDT: commercial, on SciNet,
good for parallel debugging (including mpi and cuda)

M.Ponce/R.Van Zon (SciNet HPC Consortium) PHY1610H - Scientific Computing: Testing and Debugging February, 2021 25 / 25

	Motivation
	Unit testing
	Debugging

