
PHY1610H - Scientific Computing:
File IO

Ramses van Zon & Marcelo Ponce

SciNet HPC Consortium/Physics Department
University of Toronto

February 2021

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 1 / 30

Today’s class

1 File Input/Output Operations
2 Data Management: metadata
3 File Formats

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 2 / 30

File I/O

File systems
It’s where we keep most data.

Typically spinning disks

Logical structure: directories, subdirectories and files.

On disk, these are just blocks of bytes.

Each I/O operation (IOPS) gets hit by latency.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 3 / 30

File I/O
What are I/O operations, or IOPS?

Finding a file (ls)
Check if that file exists, read metadata (file size, date stamp etc.)
Opening a file:
Check if that file exists, see if opening the file is allowed, possibly create it, find the block
that has the (first part of) the file system.
Reading a file:
Position to the right spot, read a block, take out right part
Writing to a file:
Check where there is space, position to that spot, write the block.

Repeated if the data read/written spans multiple blocks.
Move the file pointer (“seek”):
File system must check were on disk the data is.
Close the file.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 4 / 30

Why it matters: disk access rates over time

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10
M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 5 / 30

I/O-aware performance tips
Do’s

Write binary format files Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Dont’s
Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (file locks)

Don’t close files between small reads or writes (no: open, write, close, open for append,
write, . . .)

Don’t write many small files (< 10MB). System is optimized for large-block I/O.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 6 / 30

File formats

Formats
ASCII

Binary

MetaData (XML)

Databases

Standard libraries (HDF5, NetCDF)

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 7 / 30

ASCII vs. Binary

American Standard Code for
Information Interchange

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write
(conversions)

Native Binary

Pros

Efficient Storage

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 8 / 30

ASCII vs. binary
Writing 128M doubles
Format /scratch (GPFS) /dev/shm (RAM) /tmp (disk)

ASCII 173 s 174 s 260 s
Binary 6 s 1 s 20 s

Syntax
Format

C C++ FORTRAN
ASCII f=fopen(name,"w"); ofstream f(name); open(6,file=name)

fprintf(f,...); f « ... ; write(6,*)
Binary f=fopen(name,"w"); ofstream open(6, file=name,

f(name,ios::binary); form=’unformatted’)
fwrite(f,...); f.write(...); write(6,*)

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 9 / 30

Metadata

But what about that metadata? What is it?

Metadata is the data about the data. Meaning information that lets you make sense of the
data.
It can (and should) include just about any and all information about how the data was
created:

I what parameters were used in the run?
I where it was run, when it was run.
I the version of the code used to perform the run, compiler used to create the code, compiler

flags.
I and anything else that might or not be useful.

If you’re not sure if that bit information should be kept as metadata, then keep it. You
never know what information might be needed in the future.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 10 / 30

Metadata
Data about Data

File system: size, location, date, owner, etc.
Application data: File format, version, iteration, provenance, etc.

Example: XML
<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>

“Standard” Formats
HDF5 (Hierarchical Data Format)
NetCDF (Network Common Data Format)

CGNS (CFD General Notation System)
IGES/STEP (CAD Geometry)

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 11 / 30

Standard formats

What’s the best way to save our metadata? There are several standard file formats which
combine the metadata with the data:

HDF5 (Hierarchical Data Format)
NetCDF (Network Common Data Form)
discipline-specific formats

What are the benefits?
Most are provided as libraries.
Self-describing (metadata is embedded with the data).
Many are binary agnostic, so portable.
Many support Parallel I/O and native FS support.
Broader tool support (visualization, etc.)

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 12 / 30

NetCDF

A format as well as an Applications Program
interface (API).

Means you do not have to do low-level binary
formatting.

NetCDF gives you a higher level approach to writing
and reading multi-dimensional arrays.

Suitable for many common scientific use-cases (if
not, check out HDF5).

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 13 / 30

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/

NetCDF Data Model

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 14 / 30

NetCDF Conventions

A quick note about netCDF conventions:

There are lists of conventions that you can follow for variable names, unit names ("cm",
"centimetre", "centimeter"), etc.
If you are planning for interoperability with other codes, this is the way to go.
Codes expecting data following, say, CF (Climate and Forcast) conventions for geophysics
should use that convention.
www.unidata.ucar.edu/software/netcdf/conventions.html

Make life easier for yourself and your collaborators: use the standard conventions.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 15 / 30

www.unidata.ucar.edu/software/netcdf/conventions.html

Writing and Reading a NetCDF file

To write a NetCDF file, we go through the
following steps:

Create the file

Define dimensions

Define variables

End definitions

Write variables

Close file

To read in (part of) a NetCDF file, we go
through the following steps:

Open the file

Get dimension ids

Get dimension lengths

Get variable ids

Read variables

Close file

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 16 / 30

Sample code writing and reading a NetCDF file
#include <stdio.h>
#include <stdlib.h>
#include <netcdf.h>
#define MIN(x,y) ((x)<(y)?(x):(y))
int main(void) {
const int N = 48;
int ncid, varid, status, dimid[2], *data;
printf("Testing i/o in netcdf4\n");
data = malloc(sizeof(int)*N*N);
for (int i = 0; i < N*N; i++)

data[i] = MIN(N/2-abs((i%N)-N/2), N/2-abs((i/N)-N/2));
status = nc_create("test.nc", NC_CLOBBER|NC_NETCDF4, &ncid);
status = nc_def_dim(ncid, "X", N, &dimid[0]);
status = nc_def_dim(ncid, "Y", N, &dimid[1]);
status = nc_def_var(ncid, "M", NC_INT, 2, dimid, &varid);
status = nc_enddef(ncid);
status = nc_put_var_int(ncid, varid, data);
status = nc_close(ncid);
free(data);
printf("Done.\n");

}

#include "netcdf.h"
#define MAX(x,y) ((x)>(y)?(x):(y))
int main(void){

int fileid, varid, status, dimid[2], maximum=0, *data;
size_t nx, ny;
char name[256];
printf("Testing read in of a netcdf4 file\n");
status = nc_open("test.nc", NC_NOWRITE, &fileid);
status = nc_inq_dimid(fileid, "X", &dimid[0]);
status = nc_inq_dimid(fileid, "Y", &dimid[1]);
status = nc_inq_dim(fileid, dimid[0], name, &nx);
status = nc_inq_dim(fileid, dimid[1], name, &ny);
data = malloc(nx*ny*sizeof(int));
status = nc_inq_varid(fileid, "M", &varid);
status = nc_get_var(fileid, varid, data);
status = nc_close(fileid);
for (int i=0; i<nx*ny; i++)

maximum = maximum<data[i]?data[i]:maximum;
printf("Max. value = %d\n", maximum);
free(data); printf ("Done.\n");

}

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 17 / 30

More netCDF goodness
And there are more features:

Not only can you read in only the variables that
you’re interested in, it is also possible to access
subsections of an array, rather than reading in
the entire thing.
Allows parallel I/O.
Allows "infinite" arrays (UNLIMITED
dimensions), which means the arrays can grow.
Good for timestepping, for example.
Allows you to save custom datatypes (objects,
for example).

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 18 / 30

On the use of meta-data

You must must must save your data-about-the-data, and NetCDF allows you to bake the
meta-data right into the data file. What should it include?

Include your name, as the author of the data.
Include the date and time the data was created.
Include the name of the code, and the version number of the code, which was used to
create it.
Include where it was created, what operating system.
Include the values of key variables that were used to create the data.
Include anything and everything that might help you, in six months, to understand the
what/where/why/how of the data.
Include any other information that will allow you to TRUST the data. If you’re not sure,
include it!

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 19 / 30

Data Managament and Parallel I/O

Data files must take advantage of parallel I/O

For parallel operations on
single big files, parallel
filesystem isn’t enough
Data must be written in
such a way that nodes can
efficiently access relevant
subregions
HDF5, NetCDF formats
typical examples for
scientific data

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 20 / 30

HDF5

HDF5 is also self-describing
file format and set of
libraries
Unlike NetCDF, much more
general; can shove almost
any type of data in there

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 21 / 30

HDF5 Groups

HDF5 has a structure a bit like a linux
filesystem:

“Groups” - directories,
“Dataset” - files

NetCDF, HDF are not Databases
Seem like - lots of information, in key value pairs.
Relational databases - interrelated tables of small pieces of data
Very easy/fast to query
But can’t do subarrays, etc..

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 22 / 30

ASCII vs. Binary vs. NetCDF

American Standard Code
for Information Interchange

Pros
Human readable
Could embed metadata
Portable (architecture
independent)

Cons
Inefficient storage
Expensive for read/write
(conversions)

Native Binary

Pros
Efficient storage
Efficient read/write
(native)

Cons
Have to know the
format to read
Portability (Endianness)

NetCDF

Pros
Efficient storage
Efficient read/Write
Portability
Embedded metadata

Cons
Only for
multi-dimensional
arrays

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 23 / 30

Summary
Use file I/O as little as possible. Keep it to big files, with as few IOPs as possible.
Use a binary format to store you data, not ASCII.
It’s a good practise to make your data "self-describing", meaning store your metadata with
your data in the same file.
NetCDF is a commonly used format to store data that has many useful features.

I/O performance
Binary data

Large files

Spatial Locality

Reduce number of I/Ops

I/O best practices
Metadata

Self-describing file format

Use the ones already available via
libraries...

NetCDF, HDF5, ...
M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 24 / 30

NetCDF writing example
// netCDF_writing.cpp

#include <vector>

#include <netcdf>

using namespace netCDF;

int main() {
int nx = 6, ny = 12;

int dataOut[nx][ny];

for(int i = 0; i < nx; i++)

for(int j = 0; j < ny; j++)

dataOut[i][j] = i * ny + j;

// Create the netCDF file.

NcFile dataFile("1st.netCDF.nc",

NcFile::replace);

// Create the two dimensions.

NcDim xDim = dataFile.addDim("x",nx);

NcDim yDim = dataFile.addDim("y",ny);

std::vector<NcDim> dims(2);

dims[0] = xDim;

dims[1] = yDim;

// Create the data variable.

NcVar data =

dataFile.addVar("data", ncInt, dims);

// Put the data in the file.

data.putVar(&dataOut);

// Add an attribute.

dataFile.putAtt("Creation date:",

"12 Dec 2014");

return 0;

}

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 25 / 30

NetCDF writing example, continued

$

$ g++ -I${NETCDF_INC} netCDF_writing.cpp -c -o netCDF_writing.o

$

$ g++ -L${NETCDF_LIB} netCDF_writing.o -o netCDF_writing -lnetcdf_c++4

$

$./netCDF_writing

$

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 26 / 30

NetCDF writing example, continued
$

$ ncdump 1st.netCDF.nc

netcdf 1st.netCDF {
dimensions:

x = 6 ;

y = 12 ;

variables:

int data(x, y) ;

// global attributes:

:Creation date = "12 Dec 2014" ;

data:

data =

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;

}
$

Use the ’ncdump’ command to see the contents of your netCDF file.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 27 / 30

NetCDF reading example

// nc_reading2.cpp

#include <iostream>

#include <netcdf>

using namespace netCDF;

int main() {
// Specify the netCDF file.

NcFile dataFile("1st.netCDF.nc",

NcFile::read);

// Read the two dimensions.

NcDim xDim = dataFile.getDim("x");

NcDim yDim = dataFile.getDim("y");

int nx = xDim.getSize();

int ny = yDim.getSize();

std::cout << "Our matrix is "

<< nx << " by " << ny << std::endl;

int **p = new int *[nx];

p[0] = new int[nx * ny];

for(int i = 0; i < nx; i++)

p[i] = &p[0][i * ny];

// Create the data variable.

NcVar data = dataFile.getVar("data");

// Put the data in a var.

data.getVar(p[0]);

for(int i = 0; i < nx; i++) {
for(int j = 0; j < ny; j++) {std::cout <<

p[i][j] << " "; }
std::cout << std::endl;

}
return 0;

}

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 28 / 30

NetCDF reading example 2, continued
$

$

$ g++ -I${NETCDF_INC} nc_reading2.cpp -c -o nc_reading2.o

$

$ g++ -L${NETCDF_LIB} nc_reading2.o -o nc_reading2 -lnetcdf_c++4

$

$./nc_reading2

Our matrix is 6 by 12

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71

$

$

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 29 / 30

More examples available at . . .

https://www.unidata.ucar.edu/software/netcdf/docs/examples.html

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610H: File IO February 2021 30 / 30

https://www.unidata.ucar.edu/software/netcdf/docs/examples.html

	File I/O
	File Formats
	Data Managament
	Self-describing formats
	NetCDF
	HDF5

	Discussion
	Conclusions
	Appendix
	More NetCDF Examples

