
Make: an automation building tool
(PHY1610 – Lecture 4)

Ramses van Zon & Marcelo Ponce

SciNet HPC Consortium/Physics Department
University of Toronto

January 21st, 2021

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 1 / 23

Today’s class

Today we will discuss the following topics:

Review of Modularity and Automation

The ’make’ command.

make makefiles/rules/patterns/...

make examples.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 2 / 23

Modularity and Automatization

header (.h) files

implementation (.cc/.cpp/.cxx) files

objects (.o) files – generated by the
compilation stage

library files (.a/.so/...)

an executable – generated in the
linking stage

* make can help to automize and generate
each of the steps in the process

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 3 / 23

make: Origin

The typical compilation of a large program is a two-step process:

1 First individually compile all .cpp files, but not the .h (header) files, to generate .o
(library) files.

2 Link all of the .o files together, including external .so and .a (shared-object and static
library files), to generate an executable.

However, it can get complicated and redundant:

you need to keep track of what depends upon what.

you need to retype in the entire compilation command every time you need to recompile.

It’s easy to forget all of your compiler flags from one day to the next, as well as the
location of external libraries.

It’s better to keep all of this information contained in a single file.
This is where the ’make’ program enters the picture.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 4 / 23

make: Generalities

make is a program that is used to build programs from multiple .cpp, .h, .o, and other files.

make is a very general framework that is used to compile code, of any type.

make takes a ‘Makefile’ as its input, which specifies what to do, and how.

The Makefile contains variables, rules and dependencies.

The Makefile specifies executables, compiler flags, library locations, ...

It is a crutial component of Professional Software Development

Besides building programs, make can be used to manage any project where some files
must be updated automatically from others whenever the others change (eg. papers, ...)

GNU make refs

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 5 / 23

https://www.gnu.org/software/make/manual/html_node/index.html

make: basic usage

Make is invoked with a list of target file names to build as command-line arguments,

$ make [TARGET ...]

Without arguments, Make builds the first target that appears in its makefile, which is
traditionally a symbolic “phony” target named ALL.

Make decides whether a target needs to be regenerated by comparing file modification
times (timestamp).
This solves the problem of avoiding the building of files which are already up to date, but
be aware that sometimes it may fail...

Make takes many command-line arguments (make --help), and can also tell you the
available targets in a makefile,

$ make --help

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 6 / 23

Makefiles

Make searches the current directory for the makefile to use,
(eg. makefile, Makefile, GNUmakefile) and then runs the specified (or default)
target(s) from (only) that file

It is possible to specify a different “makefile” by using a ‘-f’ flag, eg.

$ make -f myMakefile [TARGET ...]

the makefile is a plain-text file, with a particular structure

it may include rules and even use commands from the shell

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 7 / 23

Rules
A makefile consists of rules.

Each rule begins with a textual dependency line which defines a target followed by a colon
(:) and optionally an enumeration of components (files or other targets) on which the
target depends.
Eg. a target is a file to be created or updated.

The dependency line is arranged so that the
target (left hand of the colon) depends on
components (right hand of the colon).

It is common to refer to components as
prerequisites of the target.

each command-line must start with a −−→−−→
tab , to be recognized as a command

TARGET: dependencies...

[commnad 1]
.
.
.

[commnad n]

TARGET1 [TARGET2 ...]: dep1 dep2 ...

[commnad 1]
.
.
.

[commnad n]

Makefile:3: *** missing separator. Stop.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 8 / 23

Rules – commands
Each command is executed by a
separate shell or command-line
interpreter instance.

backslash \ can be used to have
commands executed by the same shell,
it represents line-continuation

commands can be separated by ;

comments are included using #
target: list - List source files

list:

Won’t work, each cmd is in separate shell

cd src

ls

Correct, continuation of the same shell

cd src; \

ls

an @, results in the command not to be
printed to standard ouput

example of a simple makefile

hello: ; @echo ‘‘hello’’

hello:

@echo ‘‘hello’’

A rule may have no command lines def.
The dependency line can consist solely of
components that refer to targets.

example of a makefile, with

multiple rules concatenated

realclean: clean distclean
.
.
.

clean: ...
.
.
.

distclean: ...

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 9 / 23

Macros & Variables
Macros are usually referred to as variables
when they hold simple string definitions,
like “CXX = g++”.

Macros in makefiles may be overridden in
the command-line arguments passed to
the Make utility.

Macros allow users to specify the
programs invoked and other custom
behavior during the build process.
For example, the macro “CXX” is
frequently used in makefiles to refer to the
location of a C compiler

MACRO = definition

PACKAGE = package

VERSION = ‘ date +"%Y.%m%d" ‘

ARCHIVE = $(PACKAGE)-$(VERSION)

dist:

Notice that only now macros are

expanded for shell to interpret:

tar -cf package-‘date +"%Y%m%d"‘.tar

tar -cf $(ARCHIVE).tar .

Environment variables are also
available as macros.

make is sort of two languages in one

The first language describes dependency graphs consisting of targets and prerequisites.

The second language is a macro language for performing textual substitution.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 10 / 23

Variables

Variables

A variable begins with a $ and is enclosed within parentheses (...) or braces {...}.
Single character variables do not need the parentheses.
Egs. $(CC), $(CC FLAGS), $@, $^.

Automatic Variables

$@: the target filename
$*: the target filename without the file extension
$<: the first prerequisite filename
$^: the filenames of all the prerequisites, separated by spaces, discard duplicates.
$+: similar to $^, but includes duplicates
$?: the names of ll prerequisites that are newer than the target, separated by
spaces

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 11 / 23

Special Rules

Suffix Rules

have target with names in the form “.FROM.TO”, and are used to launch actions based on file
extension.

Eg.

.SUFFIXES: .txt .html

From .html to .txt

.html.txt:

lynx -dump $< > $@

$ make file.txt

lynx -dump file.html > file.txt

$< refers to the first prerequisite
$@ refers to the target

Suffix rules cannot have any prerequisites of their own.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 12 / 23

Special Rules

Pattern Rules

A pattern rule looks like an ordinary rule, except that its target contains exactly one character
‘%’.
The target is considered a pattern for matching file names: the ‘%’ can match any substring
of zero or more characters, while other characters match only themselves.
The prerequisites likewise use ‘%’ to show how their names relate to the target name.

Eg.

From .html to .txt

%.txt : %.html

lynx -dump $< > $@

Use $< to refer to the first dependency of the
current rule.
Use $@ to refer to the target of the current rule.
Use $̂ to refer to the dependencies of the current
rule.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 13 / 23

phony target

A target that does not correspond to a file or other object.
Phony targets are usually symbolic names for sequences of actions.

.PHONY: variables

variables:

@echo TXT FILES: $(TXT FILES)

.PHONY: clean

clean:

rm -f *.dat

rm -f results.txt

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 14 / 23

Compilation and Linking
example.cc

// example using the GSL library

#include <iostream>

#include <gsl/gsl sf bessel.h>

int main() {
double x = 5.0;

double y = gsl sf bessel J0(x);

std::cout << "J0(" << x << ") = "

<< y << std::endl;

return 0;

}

* Compilation

$ g++ -std=c++11 -I/usr/local/include -c example.c

$ export GSL INC=/usr/local/include

$ g++ -std=c++11 -I${GSL INC} -c example.c

* Linking with libraries

$ g++ -std=c+11 -L/usr/local/lib example.o -lgsl

$ export GSL LIB=/usr/local/lib

$ g++ -std=c++11 -L${GSL LIB} example.o -lgsl

Using SciNet’s TEACH (NIAGARA)

Use the appropriate module (eg. module load gsl/2.4), and the corresponding environment
variables: ${SCINET GSL ROOT}
– (actually not needed!) ${SCINET GSL ROOT}/include ${SCINET GSL ROOT}/lib

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 15 / 23

Compiling with make
How does make work?

A makefile ’rule’ is a word
followed by a colon (:).

By default make will execute the
first rule it encounters.

After the colon are the
dependencies of the rule.

When make hits a dependency it
goes and looks for it.

When it runs out of rules for the
dependencies, it checks the
timestamps; if the dependency is
newer than the rule the
command is executed.

This file is called Makefile

for compiling a program using GSL

Define the compiler to use.

CXX = g++

Compiler and linker flags.

GSL INC ?= . ; GSL LIB ?= .

CXXFLAGS = -I${GSL INC} -O2

LDFLAGS = -L${GSL LIB}
LDLIBS = -lgsl -lgslcblas

all: myprog

myprog: myprog.o

${CXX} -o myprog myprog.o ${LDFLAGS} ${LDLIBS}

myprog.o: myprog.cpp

${CXX} ${CXXFLAGS} -c -o myprog.o myprog.cpp

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 16 / 23

Compiling multiple source files with make

How does make work?

make will only recompile those
dependencies that have source
files that are newer then the
library, thus only the code you
are working on is modified.

The most annoying part of make:
the indentation of the command
after the rule is actually a ’tab’ (
−−→−−→), and it must be a tab.

The \ symbol indicates a
line-continuation.

Makefile

CXX = g++

GSL INC ?= . ; GSL LIB ?= .

CXXFLAGS = -I${GSL INC} -O2

LDFLAGS = -L${GSL LIB}
LDLIBS = -lgsl -lgslcblas

all: MyArray

MyArray: MyArray.o outputarray.o

${CXX} -o MyArray MyArray.o \

outputarray.o ${LDFLAGS} ${LDLIBS}

MyArray.o: MyArray.cpp outputarray.h

${CXX} ${CXXFLAGS} -c -o MyArray.o MyArray.cpp

outputarray.o: outputarray.cpp

${CXX} ${CXXFLAGS} -c -o outputarray.o outputarray.cpp

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 17 / 23

Put a ’clean’ rule in your Makefile
CXX = g++

GSL INC ?= . ; GSL LIB ?= .

CXXFLAGS = -I${GSL INC} -O2

LDFLAGS = -L${GSL LIB}
LDLIBS = -lgsl -lgslcblas

MyArray: MyArray.o outputarray.o

${CXX} -o MyArray MyArray.o outputarray.o ${LDFLAGS}
${LDLIBS}

MyArray.o: MyArray.cpp outputarray.h

${CXX} ${CXXFLAGS} -c -o MyArray.o MyArray.cpp

outputarray.o: outputarray.cpp

${CXX} ${CXXFLAGS} -c -o outputarray.o outputarray.cpp

clean:

rm -f MyArray.o outputarray.o MyArray

outputarray.cpp

outputarray.o

MyArray.cpp

MyArray.o

MyArray

gsl

gslcblas

$ make clean

$ make

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 18 / 23

Parallel Execution

Normally, make will execute only one recipe at a time, waiting for it to finish before
executing the next

However, the ‘-j’ or ‘--jobs’ option tells make to execute many recipes simultaneously.

If the ‘-j’ option is followed by an integer, this is the number of recipes to execute at
once; this is called the number of job slots.

If there is nothing looking like an integer after the ’-j’ option, there is no limit on the
number of job slots.

The default number of job slots is one, which means serial execution (one thing at a time).

It is possible to inhibit parallelism in a particular makefile with the .NOTPARALLEL

pseudo-target

Eg.

$ make -j 8

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 19 / 23

Summary

make utility

automation tool

mandatory in software development

widely used for software installation

not only used in software compilation,
eg. latex-paper generation, ...

there are several alternatives to make
(eg. cmake, ...)

Best Practices on Scientific/Professional
Software Development

Modularity

Automation Building Tool

Version Control

Defensive Programming

Unit Testing

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 20 / 23

Example of a Makefile, for compiling a Latex-document

Makefile for compiling a latex paper

NAME=manuscript

TARGET=$(NAME).pdf
SOURCE=$(NAME).tex

JUNK=.aux .bbl .blg .dvi .log .nav .out

.ps .pdf .snm .tex.backup .tex.bak

.toc Notes.bib

.PHONY: clean

$(TARGET): $(SOURCE)
@pdflatex $(SOURCE)
@bibtex $(NAME)
@pdflatex $(SOURCE)
@pdflatex $(SOURCE)

all: $(TARGET)

clean:

@for ext in $(JUNK); do \
rm−v $(NAME)$$ext; \

done

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 21 / 23

Documenting Makefiles

This might result more useful, either when developing professional software or building
pipelines.
--help will show available targets in a makefile,

$ make --help

It is possible to document the targets as well, eg

.

.

.

.PHONY : help

help :

@echo "debug: compile code with debugging flags."

@echo "build: compile code with default options."

@echo "install: install package."

@echo "clean: Remove auto-generated files."

$ make help

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 22 / 23

Self-documented Makefiles
It is possible to improve the way in which the targets are documented.

debug: compile code with debugging flags.

debug : ...

.

.

.

build: compile code with default options.

build : ...
.
.
.

install: install package.

install : ...
.
.
.

clean : Remove auto-generated files.

.PHONY : clean

clean :
.
.
.

.PHONY : help

help : Makefile

@sed -n ’s/̂ ##//p’ $<

$ make help

debug: compile code with debugging flags.

build: compile code with default options.

install: install package.

clean: Remove auto-generated files.

M.Ponce/R.Van Zon (SciNet HPC @ UofT) PHY1610: make January 21st, 2021 23 / 23

	make
	Motivation
	General Aspects
	Makefiles
	Rules
	Variables
	Special Rules
	Compiling with make

	Summary
	Appendix

