
Documentation (PHY1610 Lecture 4)

Ramses van Zon Marcelo Ponce

Winter 2021

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 1 / 6

Section 1

Documentation

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 2 / 6

Document your modules
The most unlikely pieces of code can end up being reused, so try and add at least a bit of documentation.

There are many documentation styles and philosophies:

No documentation

This style also often advocates no comments. The pretense is that clear code is ‘self-documenting’.

Sure, but . . . yeah, sorry, no.

Auto-generated documentation

Adding specially formatted comments that a tool like doxygen uses to generate documentation.

This is pretty decent, and a good way to keep documentation up-to-date when the code changes.

New-user oriented

Your code will get read by someone with (much) less understanding of what it’s supposed to do than
you. If you were in this situation, what documentation would you need to be able to use the module?

If you do nothing else, at least add a README.md file.

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 3 / 6

Doxygen (an example)
/// @file outputarray.h
/// @author Ramses van Zon
/// @date January 14, 2019
/// @brief Module for writing a 1d array of doubles to text and binary files.
#ifndef OUTPUTARRAYH
#define OUTPUTARRAYH
#include <string>

/// @brief Function to write an array of doubles to a binary file.
/// This function does a raw dump of the array file to file.
/// @param s the filename
/// @param n number of elements of the array to write to file
/// @param x pointer to the first element of the array of doubles
void writeBinary(const std::string& s, int n, const double x[]);

/// @brief Function to write an array of doubles to a text file.
/// The file will contain each element of the array on a separate line.
/// @param s the filename
/// @param n number of elements of the array to write to file
/// @param x pointer to the first element of the array of doubles
void writeText(const std::string& s, int n, const double x[]);
#endif

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 4 / 6

Doxygen (an example, continued)
1 Generate a configuration file for doxygen called Doxygen (then edit it):

doxygen -g
sed -i 's/PROJECT_NAME[]*=.*/PROJECT_NAME=Outputarray/' Doxyfile

2 Create a README.md
[//]: # \mainpage
Outputarray is a module for writing a 1d array of doubles to text and binary files.
Compile with: "g++ -c -std=c++11 outputarray.cc -o outputarray.o"
Generate documentation with doxygen as follows

doxygen -g
sed -i 's/PROJECT_NAME[]*=.*/PROJECT_NAME=Outputarray/' Doxyfile
doxygen
make -C latex

This requires doxygen and latex to be installed.
The resulting documentation will be in latex/refman.pdf and html/index.html.

3 Generate the documentation in html and latex form:
$ doxygen

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 5 / 6

Doxygen (an example, html result)

Ramses van Zon, Marcelo Ponce Documentation (PHY1610 Lecture 4) Winter 2021 6 / 6

	Documentation

