
Introduction to Computational BioStatistics with R:
coding best practices

Erik Spence

SciNet HPC Consortium

1 October 2020

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 1 / 28

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Best practices”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 2 / 28

https://support.scinet.utoronto.ca/education

Today’s class

Today we will visit the following topics:

Coding best practices.

Modularity.

Testing.

Defensive programming.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 3 / 28

What are coding best practices?

What are coding best practices?

These are coding practices which have been discovered, over the course of decades, to
produce code which is easy to write, read, debug, test, modify, share and use.

Best practices are a set of rules which affect how you
I design the code.
I implement the code.

Broadly speaking, coding best practices can be summed up thus:
I write code which is modular.
I don’t write code which has already been written.
I write code which is easy to read and understand.

We’ve discussed a number of these points during previous lectures, but today we will discuss
them in detail.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 4 / 28

What is modularity?

What do I mean when I say that I’m writing modular code? I’m writing code which:

is separated into individual functions and procedures. Each of these performs a single,
specific task.

is separated into files, if the code is big enough, which contain related functionality.

is written so as to enforce boundaries between sections of code.

includes testing routines, to test the functions against known correct answers.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 5 / 28

Why does modularity matter?

Who cares? Why should I write modular code?

Scientific software can be large, complex and subtle.

If each section of code uses the internal details of other sections you must understand the
entire code at once to understand what the code in a particular section is doing.

Interactions grow as (number of lines of code)2.

This makes finding bugs (mistakes) extremely difficult.

It also makes writing testing routines for your code extremely difficult.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 6 / 28

Bad code
n <- 100

m <- matrix(rep(0, n * n), nrow = n)

a <- rep(0, n)

pw <- function() {
q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} a <<- q

}

en <- function() {
q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} e <- 0

for (i in 1:n) {
e <- e + a[i] * q[i]

} return(e) }

for (i in 1:n) a[i] <- 1

for (i in 1:n) for (j in 1:n) {
m[i,j] <- something(i,j)

}

b <- 0

for (i in 1:n) {
if(m[i,i] > b) b <- m[i,i]

}

for (i in 1:n) m[i,i] <- m[i,i] - b

for (i in 1:10) pw()

cat("Ground state energy is ", en(), ’\n’)

It uses functions. Isn’t that modular? What’s
wrong with this code?

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 7 / 28

What’s wrong with this code?
While it is true that this is valid R code, there are many things that are wrong. Some serious,
some less so.

Global variables are being directly accessed within functions.

Global variables are modified from within a function (using the ’<<-’ operator).

All the code is in one file.

Code has been copied and pasted.

Doesn’t use existing R functionality.

No use of vectorization.

No comments.

No indentation of code blocks.

Cryptic variable and function names.

Let’s go through these problems, one at a time, and fix the code.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 8 / 28

Global variables
We’ve discussed this before. Don’t use global variables inside functions without passing them
into the function explicitly through the function’s argument list. Just don’t.

By default, in most programming languages, variables declared outside of functions are
considered ’global’, meaning they can be modified by any function.

They’re very tempting to use, since they make all information available everywhere, but
they are terrible coding practise.

Why? Because they totally destroy modularity. The domain of any function that uses
global variables is the entire program. The function can’t be tested separately from the
rest of the program.

If you have code which uses global variables, you should modify the code so that the
variables are explicitly passed into the function, through the argument list.

The ”<<-” operator allows you to modify global variables from within functions. Don’t use
it. Ever.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 9 / 28

Bad code, version 2
n <- 100; a <- rep(0, n)

m <- matrix(rep(0, n * n), nrow = n)

pw <- function(a, m) {
n <- length(a)

q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} return(q) }

en <- function(a, m) {
n <- length(a)

q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} e <- 0

for (i in 1:n) {
e <- e + a[i] * q[i]

} return(e) }

for (i in 1:n) a[i] <- 1

for (i in 1:n) for (j in 1:n) {
m[i,j] <- something(i,j)

}

b <- 0

for (i in 1:n) {
if(m[i,i] > b) b <- m[i,i]

}

for (i in 1:n) m[i,i] <- m[i,i] - b

for (i in 1:10) a <- pw(a, m)

cat("Ground state energy is ", en(a, m), ’\n’)

The functions no longer use the global
variables directly.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 10 / 28

A single file

Code should be split up into multiple files which contain functions of similar functionality.

The general model is to have a ’driver’ program which invokes the ’utility’ functions (or
whatever you want to call them).

You can write as many driver programs as you need to perform your different analyses.

The utility functions, being separate from the driver programs, can be tested and
debugged separately from any other code.

Use the ’source’ command to tell the driver program about the existence of the utility
functions.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 11 / 28

Bad code, version 3
Hydrogen Utilities.R

pw <- function(a, m) {
n <- length(a)

q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} return(q) }

en <- function(a, m) {
n <- length(a)

q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} e <- 0

for (i in 1:n) {
e <- e + a[i] * q[i]

} return(e) }

Hydrogen.R

source("Hydrogen Utilities.R")

n <- 100

m <- matrix(rep(0, n * n), nrow = n)

a <- rep(1, n)

for (i in 1:n) for (j in 1:n) {
m[i,j] <- something(i,j) }

b <- 0

for (i in 1:n) {
if(m[i,i] > b) b <- m[i,i] }

for (i in 1:n) m[i,i] <- m[i,i] - b

for (i in 1:10) a <- pw(a, m)

cat("Ground state energy is ", en(a, m), ’\n’)

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 12 / 28

Identical blocks of code

As we’ve discussed before, DO NOT copy-and-paste code.

If you feel the need to copy-and-paste code, write a function which contains the code
block.

This prevents you from copy-and-pasting code which might be buggy.

If you discover an error in the code, you only need to fix one block of code.

It also makes the code easier to read.

Never ever have multiple copies of the same block of code!

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 13 / 28

Bad code, version 4
Hydrogen Utilities.R

pw <- function(a, m) {
n <- length(a)

q <- rep(0, n)

for (i in 1:n) for (j in 1:n) {
q[i] <- q[i] + m[i,j] * a[j]

} return(q)

}

en <- function(a, m) {
q <- pw(a, m)

e <- 0

for (i in seq along(a)) {
e <- e + a[i] * q[i]

} return(e)

}

The ’en’ function can use ’pw’.

Hydrogen.R

source("Hydrogen Utilities.R")

n <- 100

m <- matrix(rep(0, n * n), nrow = n)

a <- rep(1, n)

for (i in 1:n) for (j in 1:n) {
m[i,j] <- something(i,j) }

b <- 0

for (i in 1:n) {
if(m[i,i] > b) b <- m[i,i] }

for (i in 1:n) m[i,i] <- m[i,i] - b

for (i in 1:10) a <- pw(a, m)

cat("Ground state energy is ", en(a, m), ’\n’)

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 14 / 28

Use existing functionality!

There’s no need to re-code things when others have already done the work for you.

If the functionality exists built-into R, you can feel comfortable using it. It works.

Use vectorization whenever you can!

If the functionality exists in a user-contributed package, find out if the package is
well-regarded and commonly used.

Talk to your colleagues about the R packages that are used in your field.

Don’t bother solving a coding problem which has already been solved.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 15 / 28

Bad code, version 5

Hydrogen Utilities.R

pw <- function(a, m) return(m %*% a)

en <- function(a, m) {
q <- pw(a, m)

return(sum(a * q))

}

The ’pw’ function just calculates a
matrix multiplication.

The ’en’ function just returns the sum
of the product of two vectors.

The function ’diag’ can be used to
modify the values of matrix diagonals.

Hydrogen.R

source("Hydrogen Utilities.R")

n <- 100

m <- matrix(rep(0, n * n), nrow = n)

a <- rep(1, n)

for (i in 1:n) for (j in 1:n) {
m[i,j] <- something(i,j) }

b <- max(diag(m))

diag(m) <- diag(m) - b

cat("Ground state energy is ", en(a, m), ’\n’)

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 16 / 28

Write clear code

When writing your code, make things clear. You don’t get points for writing code which is
hard to understand.

Indent your code blocks.

Use variable names which make sense.

Use function names which make sense.

Name the files which contain your functions sensibly.

Name your scripts sensibly.

Comment your code.

Six months from now you’ll thank yourself for writing clear code. So will the next graduate
student.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 17 / 28

Good code

Hydrogen Utilities.R

Functions used to calculate the

hydrogen atomic energy states.

ham.applied <- function(a, ham) {
Calculates the Hamiltonian

applied to the state vector.

a - the state vector.

ham - Hamiltonian operator.

Returns a new state vector.

Return the matrix product of the

Hamiltonian and state vector.

return(ham %*% a)

}

Hydrogen Utilities.R, continued

ground.energy <- function(a, ham) {
Calculates the hydrogen ground state energy.

a - the state vector.

ham - Hamiltonian operator.

Returns the ground state energy.

Apply the Hamiltonian.

q <- ham.applied(a, ham)

Calculate the total energy, and return.

return(sum(a * q))

}

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 18 / 28

Good code, continued
Hydrogen.R

This script calculates the ground

state atomic energy of hydrogen.

File containing the ham.applied

and ground.energy functions.

source("Hydrogen Utilities.R")

The size of our problem.

n <- 100

Hamiltonian operator, and

initial state vector.

ham <- matrix(rep(0, n * n), nrow = n)

a <- rep(1, n)

Hydrogen.R, continued

Initialize the Hamiltonian.

for (i in 1:n) for (j in 1:n) {
ham[i,j] <- something(i,j) }

Get the value of the largest diagonal

element and remove it from all diagonals.

max.diag <- max(diag(ham))

diag(ham) <- diag(ham) - max.diag

Call ham.applied 10 times.

for (i in 1:10) a <- ham.applied(a, ham)

Print out the answer.

cat("Ground state energy is ",

ground.energy(a, ham), ’\n’)

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 19 / 28

Testing

Ok, so you’ve written your awesome code, and it’s been separated by functionality into various
modules. Now you need to write testing routines.

Seriously?

The purpose of these testing routines is to test the code against known situations, now and
especially in the future. There are two broad categories of testing:

Integrated testing: testing the whole gigantic program, integrating the outputs of your
many modularized pieces.

Unit testing: testing the pieces of your modules individually.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 20 / 28

Integrated testing

Integrated testing is important, but
shouldn’t be the only type of testing done.

As you develop a large program, with
many interacting parts, bugs will
develop.

It will be difficult to determine the
source of the problem, if testing is only
performed on the integrated whole.

in

out

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 21 / 28

Unit testing

Test the pieces of the code
individually.

This means writing code that will test
the pieces of code in question.

Test against easy solutions, typical
solutions, edge cases, special cases.

This enormously speeds up the
detection of bugs.

If you are given a code which does not
come with testing routines, just
assume that it’s wrong.

in out

in out

in out

in out

in out
This won’t work if you don’t write modular
code.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 22 / 28

Testing, types of tests
So we’re writing our testing code. What kind of tests should we perform?

Comparison to analytic solutions:
I Solutions tend to be for simple situations - not hard tests of the computation.
I If your code doesn’t get these right you’ve got serious problems.

Benchmarking: comparing the results of your code to other codes which solve the same
problem, in the same parameter regime.

I Does not demonstrate that either solution is correct.
I Can show that at last one code or version has a problem, or that something has caused

changes.
I Is more powerful if different algorithm types are used.
I Save the results of benchmarks in your testing directory.

Testing against reality:
I If your code calculates something that can be compared against reality, do it as one of your

tests.
I Assume that reality is correct.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 23 / 28

Testing the good code

Hydrogen Utilities Tests.R

Testing routines for the functions

in Hydrogen Utilities.R.

source("Hydrogen Utilities.R")

Tests for ham.applied.

n <- 100

my.test <- function(a, ham, cond, test.name) {
n <- length(a)

if(sum(ham.applied(a, ham) == cond) == n) {
cat("Passed", test.name, "test.\n")

} else {
stop("Failed", test.name, "test.")

}
}

Hydrogen Utilities Tests.R, continued

Identity test.

Ham is an identity matrix.

ham <- diag(n)

a <- rep(1, n)

my.test(a, ham, a, "identity")

Linear test.

for (i in 1:n) ham[i,] <- i

my.test(a, ham, 1:n * n, "linear")

Back-diagonal test.

ham[,] <- 0

for (i in 1:n) ham[n - i + 1, i] <- i

my.test(a, ham, n:1, "back-diagonal")

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 24 / 28

Testing, continued

[ejspence.mycomp]

[ejspence.mycomp] Rscript Hydrogen Utilities Tests.R

[1] "Passed identity test."

[1] "Passed linear test."

[1] "Passed back-diagonal test."

[ejspence.mycomp]

Every so often, especially when editing your routines, re-run your test suite.

There also exist more-advanced testing frameworks to build into your R libraries. We won’t
cover those here.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 25 / 28

Defensive programming

What is ’defensive programming’? Programming to protect the code from the user (usually
yourself). This means checking that function arguments, or script command-line arguments,
meet certain criteria.

How this is accomplished depends upon the context, and the programming language, but there
are some common situations.

Check to make sure that numbers are not negative (when they shouldn’t be).

Check to make sure that arguments are of the correct type.

Use ’try’ ... ’except’.

Train yourself to put defensive coding blocks at the start of your functions.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 26 / 28

Defending the good code

Hydrogen Utilities.R

Functions used to calculate the

hydrogen atomic energy states.

ham.applied <- function(a, ham) {

The second dimension of ham must

be the length of a.

if(dim(ham)[2] != length(a)) {
stop("Problem in ham.applied: bad ham

dimensions.")

}

Return the matrix product of the

Hamiltonian and state vector.

return(ham %*% a)

}

Hydrogen Utilities.R, continued

ground.energy <- function(a, ham) {

The first dimension of ham must

be the length of a.

if(dim(ham)[1] != length(a)) {
stop("Problem in ground.energy: bad ham

dimensions.")

}

Apply the Hamiltonian.

q <- ham.applied(a, ham)

Calculate the total energy, and return.

return(sum(a * q))

}

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 27 / 28

Enough to get started

This is a good summary of coding best practices.

Starting immediately, we expect you to use best practices (comments, function
documentation, indentation, defensive programming, etc.) with all of your homework
assignments. You will be docked marks if you do not.

We will not be expecting testing routines with your homework assignments, unless explicitly
requested.

Erik Spence (SciNet HPC Consortium) Best practices 1 October 2020 28 / 28

	Best practices
	Bad code
	Global variables
	Single file
	Identical code blocks
	Existing functionality
	Clear code

	Testing
	Integrated testing
	Unit testing
	Testing good code

	Defensive programming

