
Introduction to Computational BioStatistics with R:
flow control

Erik Spence

SciNet HPC Consortium

29 September 2020

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 1 / 16

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Loops”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 2 / 16

https://support.scinet.utoronto.ca/education

About today’s class

Today’s class will explore the wild wild world of:

Loops,

Conditionals,

Factors,

Tables.

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 3 / 16

Loops

Loops are a feature of all programming languages. What are loops?

A loop is a programming structure that allows for the same chunk of code to be run over
and over again.

Each time the chunk of code is run, one or more variables change value, allowing for
slightly different behaviour each ’iteration’ of the loop.

This allows for more efficient writing of code, since you don’t need to copy-and-paste a
chunk of code many times, if you need to run it many times.

As with most coding structures, loops can be inside other loops (’nested’).

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 4 / 16

R loops

R has three types of loops. The first is the
”for” loop:

”For” each element in the list or vector,
assign the element value to the ”loop
variable” (”i”, in this case).

Then perform the code inside the code
block.

Code blocks are indicated using { and }.

Repeat the code block for each value of
the list or vector.

>

> b <- c("Hello", "World", "From",

+ "A", "Vector")

>

> b

[1] "Hello" "World" "From" "A" "Vector"

>

> for (i in b) {
+ cat(i, "\n")

+ }
Hello

World

From

A

Vector

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 5 / 16

R loops, continued

The for loop is used whenever you
know ahead of time how many times
you want to run the code block. In
this example, we want to run the
code block once for each element in
the list.

Note that the loop variable,
my.loop.var in this case, can be
named anything.

>

> for (my.loop.var in list(’cow’, 1, F, ’pants’)) {
+

+ cat(my.loop.var, "\n")

+

+ }
cow

1

FALSE

pants

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 6 / 16

R loops, continued more

The second kind of loop is the ”while” loop:

The while loop will continue for as long
as the ”test condition” is TRUE.

Be careful not to create infinite loops.

Type ”Ctrl-C” to kill your infinite loop, if
you get into one.

The while loop is used whenever you don’t
know ahead of time how many times you want
to run the code block.

The third loop is the ”repeat” loop. We will
not cover it here.

>

> i <- 1

> while (i < 4) {
+ cat(i, "\n")

+ i <- i + 1

+ }
1

2

3

>

> # Don’t do this!

> while (TRUE) cat("hello", "\n")

"hello"

"hello"
.
.
.

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 7 / 16

Conditionals

R has the usual types of conditionals. The
most commonly used is the ”if” statement:

If the condition is TRUE, then the
commands in the code block are
executed.

If the condition is FALSE, then the code
block is skipped.

Notice that, if one code block is inside
another code block, the entirety of the
second code block is indented.

>

> ("pants" == "blue")

[1] FALSE

>

> if ("pants" == "blue") {
+ cat("Yay for pants!\n")

+ }
>

> for (i in c(1, 2, 3)) {
+ if (i < 2) {
+ cat(i, "\n")

+ }
+ }
1

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 8 / 16

Boolean operators

The conditionals usually contain Boolean
operators:

You probably know what ”<” and ”>” are.

The ”==” is the equivalence test (”is
this equal to this?”).

The ”!=” is the ”not equal to” test.

The ”&” symbol is the ”AND” operator.

The ”|” symbol is the ”OR” operator.

If you have multiple tests in the same line,
separate them with brackets for clarity.

Boolean operators show up in if
statements and while loops.

>

> 2 < 3

[1] TRUE

>

> "arms" != "legs"

[1] TRUE

>

> (2 < 3) & ("arms" != "legs")

[1] TRUE

>

> (2 < 3) & ("arms" == "legs")

[1] FALSE

>

> (2 < 3) | ("arms" == "legs")

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 9 / 16

Conditionals, continued

You can add some optional structure to your
’if’ statement, such as including an ’else’:

If the condition is TRUE, then the
commands in the first code block are
executed.

If the condition is FALSE, then the code
block associated with the ’else’ is
executed.

The ’else’ statement is optional.

If you include it, the ’else’ statement
must be immediately after the ’if’ code
block’s }.

> if ("pants" == "blue") {
+ cat("Yay for pants!\n")

+ } else {
+ cat("Boo for pants!\n")

+ }
Boo for pants!

>

> for (i in c(1, 2, 3)) {
+ if (i < 2) {
+ cat(i, "\n")

+ } else {
+ cat("Too big!\n")

+ }
+ }
1

Too big!

Too big!

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 10 / 16

Conditionals, continued more

Note that the part inside the parentheses
of a while loop or an if statement does not
need to be a conditional. It can be
anything that returns a boolean, including
functions.

>

> if (TRUE) {
+ cat("I am TRUE!\n")

+ }
I am TRUE!

>

> is.character(1)

[1] FALSE

>

> if (is.character(1)) {
+ cat("I am a character!\n")

+ } else {
+ cat("I am NOT a character!\n")

+ }
I am NOT a character!

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 11 / 16

Conditionals, continued even more

But there’s more!

The ”if” statement can also contain the usual
”else if” option seen in other languages.

This allows you to combine several conditionals
into a single giant if statement.

As soon as a positive conditional is encountered
the program runs the associated code block,
and then jumps to the end of the if statement.

If no positive conditional is encountered,
I if there is an else statement, the else statement

code block is executed.
I if there is no else statement (since it is

optional), then nothing is done.

> for (i in list(1, 2, 3, 4, 5)) {
+ if (i < 2) {
+ cat(i, "\n")

+ } else if (i == 3) {
+ cat("Go 3!\n")

+ } else if (i > 3) {
+ cat(i, "\n")

+ } else {
+ cat("no good!\n")

+ }
+ }
1

no good!

Go 3!

4

5

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 12 / 16

Use vectors instead of loops!

Whenver possible, operate on whole vectors
(’vectorization’) rather than looping and
operating one element at a time.

Your computer has built-in abilities
which speed up vectorized
calculations.

The difference, especially on large
amounts of data, can be enormous.

> a <- 3:7

> b <- 6:10

> e <- rep(0,5)

>

> # do this!

> d <- a * b

>

> # don’t do this!

> for (i in 1:5) {
+ e[i] <- a[i] * b[i]

+ }
>

> d

[1] 18 28 40 54 70

> e

[1] 18 28 40 54 70

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 13 / 16

Factors

R has other data types you may
run into. One of them is ’factors’:

’factors’ are categorical
variables, and as such take
on discrete values.

OrchardSprays is a built-in
dataset.

The ’levels’ of a factor are
the possible, integer, values
the variable can take.

>

> OrchardSprays$treatment

[1] D E B H G F C A C B H D E A F G F H A E D C G B

[25] H A E C F G B D E D G A C B H F A C F G B D E H

[49] B G C F A H D E G F D B H E A C

Levels: A B C D E F G H

>

> str(OrchardSprays$treatment)

Factor w/ 8 levels "A", "B", "C", "D", ...: 4 5 2 ...

>

> factor(c("Agree", "Agree", "Disagree", "Indifferent"))

[1] Agree Agree Disagree Indifferent

Levels: Agree Disagree Indifferent

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 14 / 16

Tables
Tables are used to summarize results:

Give the ’table’ command a
vector, or a factor, and it will
summarize the frequency of
values.

You can use the ”names”
function to get the various
column values.

Individual entries can be
accessed using the double
square brackets.

> table(OrchardSprays$treatment)

A B C D E F G H

8 8 8 8 8 8 8 8

>

> my.table <- table(c("A", "A", "B", "A", "B", "B",

+ "C", "A", "C"))

>

> my.table

A B C

4 3 2

>

> names(my.table)

[1] "A" "B" "C"

>

> my.table[[3]]

[1] 2

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 15 / 16

Tables, continued

Tables can also be used to do
frequency analyses on
multi-dimentional data.

>

> a <- c("Sometimes", "Never", "Never", "Always",

+ "Always", "Sometimes", "Sometimes", "Never")

>

> b <- c("Maybe", "Maybe", "Yes", "Maybe",

+ "Maybe", "No", "Yes", "No")

>

> table(a, b)

b

a Maybe No Yes

Always 2 0 0

Never 1 1 1

Sometimes 1 1 1

>

Erik Spence (SciNet HPC Consortium) Flow control 29 September 2020 16 / 16

	Program control
	Loops
	Conditionals
	Factors
	Tables

