
Introduction to Computational BioStatistics with R:
scripts & libraries

Erik Spence

SciNet HPC Consortium

24 September 2020

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 1 / 20

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Scripts”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 2 / 20

https://support.scinet.utoronto.ca/education

Today’s class

Today we will visit the following topics:

Scripts.

Libraries.

Saving data.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 3 / 20

Creating your own collections of functions

As you develop your research you will build a collection of functions which do all sorts of
wonderful things. How should you manage your collections of functions?

You should only have one copy of any given function. Put it in a file and grab it when
you need it.

The one copy you keep should be well-tested, well-commented, and trustworthy.

If you have five copies of a function, how do you remember which one you should use?

Keep your functions in files. Keep related functions in the same file.

Name your functions and files sensibly.

But how do I access a function once I’ve written it?

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 4 / 20

Using your libraries of functions

MyUtilities.R

Double and subtract 3.

doubleAndSubtract3 <- function(x) {
return(2 * x - 3)

}

###############################

Get the min, and add seven.

minPlusSeven <- function(x) {
return(min(x) + 7)

}

> doubleAndSubtract3(10)

Error: could not find function "doubleAndSubtract3"

>

> source("MyUtilities.R")

>

> doubleAndSubtract3(10)

[1] 17

>

> minPlusSeven(8:12)

[1] 15

>

Use the ”source” command.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 5 / 20

Where am I?

Sometimes you need to know where you
are, so that you can find data, and other
things.

getwd(): get the working directory.

setwd(’somedir’): set the working
directory to ”somedir”.

dir(): list the contents of the working
directory.

ls(): list the existing variables (you
won’t see built-in variables, such as pi,
letters).

>

> getwd()

[1] "/c/Users/scinet"

>

> setwd(’temp’)

>

> getwd()

[1] "/c/Users/scinet/temp"

>

> dir()

test.R

>

> ls()

"doubleAndSubtract3" "minOrZero"

>

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 6 / 20

Reloading modified functions
Suppose you’re developing some
code, editing a file in real time.

Every time you resave the code
you must ’re-source’ the file.

R will continue to use the last
version of the code which was
sourced.

sqrcode.R

Version 1.

squared <- function(x) {
return(x*2)

}

sqrcode.R

Version 2.

squared <- function(x) {
return(x**2)

}

> source("sqrcode.R")

> squared(4)

[1] 8

>

> # fix the error

>

> source("sqrcode.R")

> squared(4)

[1] 16

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 7 / 20

Using non-standard R libraries

It is common to use packages that
have been written by the R
community.

By default, even if you’ve
installed a non-standard R
package, non-standard R
packages are not immediately
available to use.

To make them available, you
must use the ”library” function.

This loads all the functions and
variables of that package into
the working environment.

>

> data(chiroptera)

Warning message:

In data(chiroptera) : data set chiroptera not found

>

> library(ape)

>

> data(chiroptera)

>

The ’data’ function not only loads the default R
data sets. It also can load specialty data sets
which come with other packages.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 8 / 20

Installing R packages

It’s crazy-easy to install packages
which you don’t already have.

To load a non-default
library, use the ’library’
function.

To install non-standard
packages, use
’install.packages’.

Do not put
”install.packages”
commands in your scripts.
Install needed packages by
hand at the R prompt.

> library(’fun’)

Error in library("fun") : there is no package called fun

>

> install.packages("fun")

Installing package into ’/home/ejspence/lib/R’

(as ’lib’ is unspecified)

--- Please select a CRAN mirror for use in this session
.
.
.

** testing if installed package can be loaded

* DONE (fun)

>

> library(’fun’)

>

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 9 / 20

Commenting code
Comment your code!

Comments are notes which you put into your scripts which describe:
I What you’re doing.
I Why you’re doing it.
I The assumptions that you’re making.
I The plan for the code.

All languages have some means of commenting code.

Even if it’s obvious what you’re doing, comment it anyway. You never know who might
end up reading your code.

If you need some help getting started with comments, drop a knock-knock joke into the
code.

Starting with the second assignment, we expect you to comment, and comment well, all
the code in your homework assignments.

In R (and Python, and bash), comments start with #.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 10 / 20

Using R scripts

Once you have a series of commands which you will need
to run repeatedly you should save them in a script.

A script is just a list of commands that you want the
R interpreter to execute.

It’s as if you are running the commands at the
command line yourself.

By saving your commands in a script, you’ll remember
what you did six months from now.

Though ’A’ and ’b’ are global variables, they are
being passed into the ’solve’ command explicitly.

Be careful if you copy-and-paste from the R prompt
into an editor. Meaning, do not copy the ”>” prompts
into your script.

myscript.R

Create the matrix.

A <- matrix(rnorm(9),

nrow = 3

ncol = 3)

Create b.

b <- 1:3

Solve.

x <- solve(A, b)

cat("the answer is", x, "\n")

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 11 / 20

Running R scripts
Once you have a script, how do you run it? There are two options for running your script at
the Linux command line:

R CMD BATCH myscript.R. Note that by default this will generate a file called
”myscript.Rout”, which contains what would have been seen on the screen had you run
the commands by hand.

Rscript myscript.R. This is a better option, as it runs as a proper script.

[ejspence.mycomp]

[ejspence.mycomp] R CMD BATCH myscript.R

[ejspence.mycomp]

[ejspence.mycomp] Rscript myscript.R

The answer is -1.820291 -0.9132152 0.3703467

[ejspence.mycomp]

”Rscript” must be in your ”PATH” for this to work.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 12 / 20

Using R scripts, continued

A few notes about R scripts and writing your libraries of functions:

By convention R script files have a ”.R” file extension.

Use comments, so you’ll remember what you’re trying to do! There are never too many
comments. (Put them in your homework!)

Document your functions, so it’s easier to remember how to use them!

R scripts are written in raw text, so be sure to use a text editor, not a word processor.
Atom, Brackets, Sublime, Emacs, vi, nano are good. use

When you use the ”source” command, the whole file is read and executed as if you were
typing the lines at the R prompt.

You may be able to run your scripts within an IDE (like RStudio). It’s better to learn to
run them on a command line, so that you can run the scripts on Unix-based machines.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 13 / 20

Utility files and driver programs
The general framework we will use for this course is to
have ”utilities files” and ”driver scripts”.

The utilities files will contain the definitions of the
functions you need to work on your data.

It is common to have multiple utilities files,
containing functions for performing different types
of analyses.

The driver script ”drives” the analysis, invoking
the functions in the utilities files as needed to
accomplish whatever you are doing.

The functions in the utilities file are often used by
a variety of different driver scripts.

MyUtilities.R

Double and subtract 3.

doubleAndSubtract3 <- function(x)

{return(2 * x - 3)}

MyDriver.R

Get the functions.

source("MyUtilities.R")

Create the vector.

myvar <- 1:20

Get the result.

b <- doubleAndSubtract3(myvar)

cat("the answer is", b, "\n")

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 14 / 20

Command line arguments

How do I access bash command line
arguments from within an R script?

use the ”commandArgs” function.

If you don’t put ”trailingOnly = T”
you’ll get the full Rscript command,
along with many flags, along with the
command line arguments you’re after.

Note that you can only test this from
the bash prompt, not from within R or
Rstudio.

myscript2.R

args <- commandArgs(trailingOnly = TRUE)

cat("The type of args is", typeof(args), ".\n")

cat("The number of args is", length(args), ".\n")

cat("The command line arguments are", args, ".\n")

[ejspence.mycomp]

[ejspence.mycomp] Rscript myscript2.R pants 3.2

The type of args is character .

The number of args is 2 .

The command line arguments are pants 3.2 .

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 15 / 20

Command line arguments, continued
Be careful:

The return value of
”commandArgs” is a vector.

If you want to compare the
first argument to something
else, you should directly
reference the first argument.

You will lose marks on your
assignments if you don’t
reference specific argument
indices in your scripts.

myscript3.R

args <- commandArgs(trailingOnly = TRUE)

Incorrect!

pants.check <- (args == "pants")

Correct!

pants.check <- (args[1] == "pants")

[ejspence.mycomp] Rscript myscript3.R a

[ejspence.mycomp]

[ejspence.mycomp] Rscript myscript3.R a b

Warning message:

In if (args == "pants") {:
the condition has length > 1 and only the first element

will be used

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 16 / 20

Command line arguments, continued more
When comparing, make sure you are
comparing things of the same type!

The vector returned by
”commandArgs” is a vector of
STRINGS.

If you want to compare a
command line argument to
something else, you should
make sure your are comparing
strings to strings.

Alternatively, convert the
command line argument string
to another form if you want to
compare to another form.

myscript4.R

args <- commandArgs(trailingOnly = TRUE)

Incorrect!

arg.check <- (args[1] == 1)

Correct!

arg.check <- (args[1] == "1")

Also correct, though dangerous!

arg.check <- (as.numeric(args[1]) == 1)

You will lose marks on your assignments if you
compare two variables, such as the command line
argument, of different types (string, numeric,
boolean).

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 17 / 20

Using ’save’ and ’load’

Printing results is fine, but at the end of
the day you need to save your results to a
file. Don’t use a CSV file!

You can save variables using the ’save’
function.

To load saved data, use ’load’.

Note that your loaded data will
overwrite any existing variables of the
same name.

> a <- 10

> b <- 20

>

> save(a, b, file = "mydata.Rdata")

>

exit and come back

>

> load("mydata.Rdata")

>

> a

[1] 10

>

> b

[1] 20

>

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 18 / 20

Workspace management
You can also save the state of your R session:

You are working in a ”workspace”. To save your workspace for next time, use
save.image(). This will put your image in a file named ”.Rdata”.

To load a previous workspace, use ’load’.

Note that your loaded image will append to, and overwrite, you current workspace.

R will ask if you want to save your workspace when you try to exit.

> # do a bunch of stuff

> save.image()

>

> # or alternatively

> save.image(file = ’myimage.Rdata’)

>

> load("myimage.Rdata")

>

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 19 / 20

Enough to get started

There’s obviously a lot more to learn about functions, scripting and libraries. Nonetheless, this
is enough functionality to get you started, and to complete the second homework assignment.

Note that the second homework assignment has been posted.

Erik Spence (SciNet HPC Consortium) Scripts, libraries 24 September 2020 20 / 20

	Libraries
	Sourcing your code
	Directory control
	External libraries
	Commenting code

	R scripts
	Running R scripts
	Command line arguments
	Save and load

