
Introduction to Computational BioStatistics with R:
functions

Erik Spence

SciNet HPC Consortium

22 September 2020

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 1 / 25

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Functions”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 2 / 25

https://support.scinet.utoronto.ca/education

Today’s class

Today we will visit the following topics:

Functions.

Arguments.

Local versus global variables.

Returning values.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 3 / 25

Use functions!

What is a function?

Functions are collections of commands which are bundled together into a single command.

By bundling the collection of commands together, the commands can be re-used over and
over again without re-typing them all out.

You pass ’arguments’ to the function, so that the collection of commands will do different
things when different arguments are given to it.

Functions usually ’return’ a value, which is the result of the calculation or action the
function performs.

You’ve already used many of the built-in functions in R: print, is.vector, list, str, class...

Of course, we are able to create our own custom functions to do specialized things for our
research.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 4 / 25

No really, use functions!

Do I really have to?

Yes, yes, yes!

DO NOT copy-and-paste code.

If you find yourself experiencing the urge to copy-and-paste code, write a function that
does whatever it is you are copying and pasting.

In fact, if you ever do something more than once in your code, make a function to do it.

If you find that your functions are used between different files of code, create libraries so
that only ONE copy of a given function ever exists (don’t copy code!). You can reference
that file from as many other files as needed.

Or, if you’re particularly awesome, you can create your own R library of functions.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 5 / 25

Create modular code

Why can’t I copy-and-paste code?

It’s very difficult to find bugs (mistakes) in your code if you’ve got 50 copies of the same
code block floating around in your script.

By creating functions, you only need to fix one chunk of code if you make a mistake.

Your code will be easier to read.

Also, it’s easier to test functions to make sure they work correctly (unit testing).

By creating libraries of functions which you know work, you will save time because you’ll
be re-using code.

”Modular code” means code which stands alone, only depends on other nearby functions,
and can be tested on its own, outside of the whole program.

Use functions!

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 6 / 25

Defining functions

Functions are defined using the ”function” function.

The name of the function is declared by assigning
the function to a variable name.

Function names cannot start with a number.

Just type the function name to see its definition.

Indent your code blocks!

Functions are run the same way that R’s built-in
functions are run.

Assuming the function does not take any
arguments, you just type the name of the function,
with brackets.

This is called ”calling”, or ”invoking”, the function.

>

> my.func <- function() {
+ cat("Hello adoring fans!\n")

+ }
>

> my.func

function() {
cat("Hello adoring fans!\n")

}
>

> my.func()

Hello adoring fans!

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 7 / 25

Code blocks

A few comments about code blocks.

Code blocks are indicated using { and }.

A code block is a chunk of code, used as the body of a function, the body of a loop, or
the body of some other R functionality.

It is customary to indent your code blocks, to make them easier to read, though R will
work whether you indent your code or not.

You will be penalized on your assignments if you do not indent your code blocks in your
functions and scripts.

Where you put your { and } is, to some extent, a matter of taste; there are many
conventions out there.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 8 / 25

Defining functions, with arguments

Functions usually take arguments.

Arguments are simply listed in the
definition of the function.

You can list as many, or as few,
arguments as you like. The brackets
must be used.

When called, that which is passed to
the function is assigned to the variable
declared in the function definition.

That means, in this case, the value of
”10” is given to the variable ”a”
within the definition of print.me.

>

> print.me <- function(a) {
+ cat(a, ’\n’)

+ }
>

> print.me(10)

10

>

> d <- 11

>

> print.me(d)

11

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 9 / 25

Defining functions, with arguments, continued

Functions are usually written with arguments in mind.

If we don’t use arguments, then the function can
only be used for whatever parameters are
”hard-coded” into the function.

When you are writing a function with arguments, if
you’re not sure how to proceed, imagine that the
argument already has a value, and write your code
as if it does.

When you write the function, of course, the
arguments don’t yet have values, they are just
placeholders.

The arguments only actually get values when the
function is called.

>

> my.func

function() {
cat("Hello adoring fans!\n")

}
>

> my.fun.calc <- function(a) {
+ b <- 2 * a - 7

+ d <- a * b

+ cat(d, ’\n’)

+ }
>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 10 / 25

Defining functions, multiple arguments

Functions can take multiple arguments.

All non-optional arguments must be
specified when a function is called.

Notice that the argument values are
assigned in the order they appear in the
function declaration.

>

> print.me.2 <- function(a, b) {
+ cat("a is", a, "\n")

+ cat("b is", b, "\n")

+ }
>

> print.me.2(3, 4)

a is 3

b is 4

>

> print.me.2(6)

a is 6

Error in cat("b is", b, "\n") : argument

"b" is missing, with no default

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 11 / 25

Defining functions, default values

You can set default values for arguments.

Arguments which are given default values are optional.

Values of arguments can be specified explicitly when
the function in invoked.

In the example here, the default value is a string. If
the default value was a number, there would be no
quotes.

Note that you must use the ”=” to declare optional
arguments, NOT ”<-”.

The default values can be of any type (numeric,
string, list).

You can have as many optional arguments as you
want.

> print.me.3 <- function(a,

+ b = "pants") {
+ cat("a is", a, "\n")

+ cat("b is", b, "\n")

+ }
>

> print.me.3(5, 6)

a is 5

b is 6

>

> print.me.3(7, b = 8)

a is 7

b is 8

>

> print.me.3(3)

a is 3

b is pants

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 12 / 25

Local variables

Where variables are ’declared’ matters.

’Declared’ means ”defined for the first time”.

Variables which are declared within functions
are only accessible from within the function.

Such variables are ”local” to the function,
including those in the argument list.

These variables do not exist outside the
function.

This is called ”local scope”.

>

> g <- function() {
+ b <- 10

+ }
>

> g()

>

> b

Error: object ’b’ not found

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 13 / 25

Local variables, continued

Be careful which variable you are referencing.

If you declare variables outside of
functions, and they are named the same
as variables within functions, they are still
NOT the same variable.

>

> b <- "pants"

>

> g <- function() {
+ b <- 10

+ }
>

> g()

>

> b

[1] "pants"

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 14 / 25

Local variables, continued more

Even if variables have the same name, that
does not mean that they are the same
variable!

All variables which are declared in a
function are local to the function.

This means they only exist within the
function.

This means that you can have multiple
distinct variables with the same name,
inside and outside of functions.

This includes variables which are declared
within the function argument list.

> a <- 10

>

> print.a <- function(a) {
+ a <- a + 3

+ cat(a, ’\n’)

+ }
>

> print.a(a)

13

>

> a

[1] 10

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 15 / 25

Do not reassign function arguments
The value an argument gets when a function
is called should be respected.

Do not do what is done in the code to
the right.

Do NOT reassign the value of a function
argument, within the function.

Doing this can lead to problems under
certain circumstances.

It is also considered bad form.

> a <- 10

>

> # Bad!

> print.a <- function(a) {
+ a <- a + 3

+ cat(a, ’\n’)

+ }
>

> # Good!

> print.b <- function(a) {
+ b <- a + 3

+ cat(b, ’\n’)

+ }
>

> print.a(a)

13

> print.b(a)

13

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 16 / 25

Local variables, continued even more
Here’s a more-complicated example.

Functions can be declared within each
other.

These functions then become local to
the function in which they are
declared.

Why do that? Because you can then
have a local ”global” variable, which is
not accessible outside the larger
function.

> outer.func <- function() {
+ a <- 20

+ inner.func <- function() {
+ a <- 30

+ cat(a, ’\n’)

+ }
+ inner.func()

+ cat(a, ’\n’)

+ }
> a <- 10

> outer.func()

30

20

> a

[1] 10

> inner.func()

Error: could not find function "inner.func"

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 17 / 25

Global versus local variables

Where variables are declared matters.

Variables which are declared within a function are called ”local”. They may only be
accessed within the function.

Variables which are declared outside of functions are called ”global”.
I Global variables can be directly accessed from within functions, but this is a VERY BAD idea.
I It’s better to pass all information you need in your function as an argument.
I Global variables can be modified within functions, but this is VERY VERY bad form. Just

don’t.

If you start using global variables within functions, without passing the variables through
the argument list, you will break the modularity of your code. Your code will become less
portable and much harder to debug.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 18 / 25

Global variables
As mentioned earlier, do not use global variables, directly,
within functions.

Variables defined outside of functions have ”global
scope”.

It’s better to pass all information into your functions
as arguments.

R will first look for locally defined variables before
looking for global variables.

If your function depends upon global variables the
modularity of your code may become broken.

It’s possible to modify global variables from within
functions, but I’m not going to show you how.

> a <- 10

>

> # Wrong!

> print.b <- function() {
+ b <- a + 3

+ cat(b, ’\n’)

+ }
> print.b()

13

>

> # do this instead!

> print.b2 <- function(a) {
+ b <- a + 3

+ cat(b, ’\n’)

+ }
> print.b2(a)

13

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 19 / 25

Global variables, continued
We see this mistake all the time.

DO NOT access global variables from
within functions: pass them through
the argument list!

This includes your data!

Pass your data into your functions,
otherwise the modularity of your code
will be broken.

Again, this means that, if I move the
function somewhere else, and
”my.data” is not defined in that new
location, the function will fail.

>

> my.data <- read.csv("mydata.csv")

>

> # Wrong!

> my.bad.analysis <- function() {
+ a <- my.data$somecolumn

+ b <- some.other.analysis(a)

+ }
>

> # Correct!

> my.good.analysis <- function(input.data) {
+ a <- input.data$somecolumn

+ b <- some.other.analysis(a)

+ }
>

> my.good.analysis(my.data)

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 20 / 25

R return statement

So far we’ve only used our function to print
things. What if we need to return a value?

Use the ”return” statement to return
(”give back”) values from your function.

The return statement must be the last
command in the function.

Recall that, if a returned value is not
assigned to a variable, it is automatically
printed to the screen.

Do not put return values in functions
that do not return something.

>

> double.vector <- function(x) {
+ z <- x * 2

+ return(z)

+ }
>

> y <- double.vector(10)

>

> y

[1] 20

>

> double.vector(y)

[1] 40

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 21 / 25

R return statement, continued

It is possible to return values without the
return statement.

If the function ends with a value, the
value will be returned by the function.

Notice how double.vector.2 has the same
behaviour as double.vector.

For clarity, use the return statement if
your function is returning a value.

You will lose marks in your assignments if
you don’t use the return statement in
your functions, if your function is
returning something.

>

> double.vector <- function(x) {
+ z <- x * 2

+ return(z)

+ }
>

> double.vector.2 <- function(x) {
+ x * 2

+ }
>

> double.vector(10)

[1] 20

>

> double.vector.2(10)

[1] 20

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 22 / 25

Do not use ’print’ as a return statement

Do not use the ’print’ statement to return values.

Bizarrely, the ’print’ statement returns what
it’s printing.

Don’t use the ’print’ statement in place of a
proper ’return’ statement, even if it works.
It’s bad form.

In fact, DO NOT use print statements in
your assignments, period, unless ”cat” does
not work.

You will lose marks on your assignments if
you do this.

Use ’cat’ to print things, and ’return’ to
return things.

>

> print.double.x1 <- function(x) {
+ y <- x * 2

+ # Do not use ’print’ in place of

+ # a ’return’ statement!

+ print(y)

+ }
>

> z <- print.double.x1(1:10)

[1] 2 4 6 8 10 12 14 16 18 20

>

> z

[1] 2 4 6 8 10 12 14 16 18 20

>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 23 / 25

Data frames, accessing columns within functions

If you use the $ to access a column
within a function, you must ”hard
code” the name of the column into
the function. This is not ideal.

Instead, it is better to use the
column’s name, as a string, to access
the column within the function.

This gives the flexibility of changing
the name of the column that is
accessed by the function.

>

> # Not the best way.

> some.analysis.1 <- function(input.data) {
+ # This function can only work on "somecolumn".

+ a <- input.data$somecolumn

+ b <- some.other.analysis(a)

+ }
>

> # A better way.

> some.analysis.2 -> function(input.data,

+ working.col = "somecolumn") {
+ # This function can work on any column.

+ a <- input.data[, working.col]

+ b <- some.other.analysis(a)

+ }
>

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 24 / 25

Enough to get started

There’s obviously a lot more to learn about functions. Nonetheless, this is enough functionality
to get you started, and to complete the second homework assignment.

Note that the second homework assignment is assigned today, not Thursday.

Erik Spence (SciNet HPC Consortium) Functions 22 September 2020 25 / 25

	Functions
	Modular code

	Defining functions
	Arguments
	Default values

	Global and local variables
	Local variables
	Global variables

	Returning values
	Using 'print' to return

