
Introduction to Computational BioStatistics with R:
vectors and data frames

Erik Spence

SciNet HPC Consortium

17 September 2020

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 1 / 23

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Vectors”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 2 / 23

https://support.scinet.utoronto.ca/education

About today’s class

Today’s class will explore the wild wild world of:

Vectors.

Slicing.

Data frames.

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 3 / 23

R vectors
Vectors are baked right into R:

Homogeneous (same type).

Compact.

Not nested.

> a <- c(1,2,3)

> b <- c("Hello", "World", "From", "A", "Vector")

> str(b)

chr [1:5] "Hello" "World" "From" "A" "Vector"

> d <- 1:17

> str(d)

int [1:17] 1 2 3 4 5 6 7 8 9 10 ...

>

The ”c” command combines values into a vector or list.

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 4 / 23

R vectors, continued
There are many ways to create vectors in R:

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

>

> seq(2, 20, 4)

[1] 2 6 10 14 18

>

> paste("A", 1:5, sep = "")

[1] "A1" "A2" "A3" "A4" "A5"

>

> rep(letters[1:5], 3)

[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b" "c" "d" "e"

>

> is.vector(1:10)

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 5 / 23

Using sample to create vectors

The ”sample” function samples from a vector:

By default, sample removes the previously
sampled elements from the set.

As such, you can’t sample more than the
set size.

To keep sampled elements in the set, use
the ”replace = TRUE” argument.

>

> sample(1:10, 4)

[1] 10 5 4 7

>

> sample(1:10, 4)

[1] 9 5 3 8

>

> sample(1:10, 4, replace = TRUE)

[1] 7 10 3 7

>

> sample(c(T, F), 4, replace = TRUE)

[1] TRUE FALSE FALSE FALSE

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 6 / 23

Slicing using integers
Use single square brackets to access the
elements of a vector.

Slicing means pulling out just the elements of
the vector that you want (filtering the values).

You can use vectors of integers to slice.

This will return the values at the given
indices.

Negative indices indicate entries you do not
want returned.

All of these slicing techniques also work on
data frames.

> a <- seq(2, 20, 4)

> a

[1] 2 6 10 14 18

>

> a[4]

[1] 14

> a[2:4]

[1] 6 10 14

>

> a[c(1, 2, 4)]

[1] 2 6 14

>

> a[-c(1, 2, 3)]

[1] 14 18

>

> a[seq(1, 5, 2)]

[1] 2 10 18

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 7 / 23

Slicing using booleans

You can also use vectors of booleans to slice your
vectors.

The statement ”a < 8” returns a vector of
booleans, indicating where the elements of
’a’ meet the criterion in question.

When slicing using vectors of booleans,
every element where the boolean vector is
TRUE will be returned.

The ”greater than or equal to” operator is
given by the ”>=” symbol.

>

> a

[1] 2 6 10 14 18

>

> indices <- a < 8

>

> indices

[1] TRUE TRUE FALSE FALSE FALSE

>

> a[indices]

[1] 2 6

>

> a[a >= 10]

[1] 10 14 18

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 8 / 23

Slicing using booleans, continued

All manner of boolean operations can be
combined to slice vectors.

The ”==” is the equivalence test (”is this
equal to this?”). ”!=” does the opposite.

The & symbol is the ”AND” operator.

The | symbol is the ”OR” operator.

The ”which” command will give the indices
of the TRUE entries.

Generally speaking, you don’t need to use
the indices to slice your data, boolean
vectors are simpler and easier.

> b <- seq(1, 60, 13)

> b

[1] 1 14 27 40 53

>

> b == 38

[1] FALSE FALSE FALSE FALSE FALSE

>

> (b > 5) & (b < 50)

[1] FALSE TRUE TRUE TRUE FALSE

>

> b[(b < 10) | (b > 30)]

[1] 1 40 53

>

> which((b < 10) | (b > 30))

[1] 1 4 5

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 9 / 23

Appending to vectors

You can add elements to the end of existing
vectors:

Use sparingly! It’s better to fill the whole
length you need first, using seq() or
rep(), rather than set elements as needed.

Increasing length of vector/list one at a
time is:

I slow
I at risk of causing memory problems

Recall that the # symbol starts
comments.

>

> a <- c(1, 2, 3)

>

> # probably bad, certainly slow

> a <- c(a, 4)

> a <- c(a, 5)

> a

[1] 1 2 3 4 5

>

> # probably bad,

> # certainly funny-looking

> a[length(a) + 1] <- 6

> a

[1] 1 2 3 4 5 6

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 10 / 23

Appending to vectors, continued

It’s much better to allocate your vector
once, and then set the elements as you go.

If you extend your vector one element at a
time, the contents of the vector must be
copied each time the vector is extended.
This is slow.

>

> # one way

> a <- vector(length = 5)

>

> # another way

> a <- rep(0,5)

>

> a[4] <- 4

> a[5] <- 5

> a

[1] 0 0 0 4 5

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 11 / 23

Not Available (NA)

Let’s try extending the vector by another 3 items,
and only set the last one.

We can use the ”is.na” function to pick out NAs.

Recall that the ”!” symbol is the ”NOT”
operator.

Math operations on NAs will usually return NA;
but most generally have built-in optional ways of
dealing with them.

Use the ”help(sum)” to learn the optional
arguments of the ”sum” function.

> a[length(a) + 3] <- 9

>

> a

[1] 0 0 0 4 5 NA NA 9

>

> is.na(a)

[1] FALSE FALSE FALSE FALSE FALSE TRUE

TRUE FALSE

>

> a[!is.na(a)]

[1] 0 0 0 4 5 9

>

> sum(a)

[1] NA

>

> sum(a, na.rm = TRUE)

[1] 18

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 12 / 23

R vectors behave intuitively

Most operations happen automatically
on all elements of a vector.

All operations either happen to all the
elements or the elements are operated
on one-by-one, depending on the
situation.

Only in very exceptional cases is it
necessary to loop over vectors or data
frames.

> a <- 1:5 + 1

> a

[1] 2 3 4 5 6

>

> b <- rep(2.,5)

>

> a * b

[1] 4 6 8 10 12

>

> sin(a)

[1] 0.9092974 0.1411200 -0.7568025

[4] -0.9589243 -0.2794155

>

> a / 2

[1] 1.0 1.5 2.0 2.5 3.0

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 13 / 23

Vector recycling

Oddly, R will perform vector ”recycling” if
you attempt to operate on two vectors of
incompatible lengths:

R will take the shorter of the two
vectors, and repeat elements until they
are both the same length.

If the length of the shorter is not a
multiple of the longer, you’ll get a
warning.

For the sake of clarity it would be best
not to do this. Use the ”rep” function
to repeat a vector if need be.

>

> 1:3 + 1:6

[1] 2 4 6 5 7 9

>

> c(1:3, 1:3) + 1:6

[1] 2 4 6 5 7 9

>

> 1:3 + 1:5

[1] 2 4 6 5 7

Warning message:

In 1:3 + 1:5 :

longer object length is not a multiple of

shorter object length

>

> 1:3 / 1:6

[1] 1.00 1.00 1.00 0.25 0.40 0.50

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 14 / 23

Built-in datasets
R contains built-in datasets that can be used for practicing.

> data()

Data sets in package datasets:

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

BJsales.lead (BJsales) Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

.

.

.

>

> str(faithful)

data.frame’: 272 obs. of 2 variables:

$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...

$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...

>

Type ’q’ to get out of the ’data’ menu.

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 15 / 23

Data frames

Data frames are a building block for data analysis in R.

A data frame is a named list of vectors (similar to a spreadsheet). Each vector (a column of
the frame) has the same length, but different columns may have different types.

>

> class(trees)

[1] "data.frame"

>

> str(trees)

’data.frame’: 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...

$ Height: num 70 65 63 72 81 83 66 75 80 75 ...

$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 16 / 23

Data frames, continued

You build your own data frames by
specifying the names of the columns when
you declare the data frame.

The ”names” and ”colnames”
functions give the names of the data
frame columns.

The ”rownames” function gives the
name of the rows, though ther aren’t
any for the trees data set.

The ”nrow” function gives the number
of rows.

>

> my.df <- data.frame(pants = 3:5,

+ name = c("Larry", "Susie", "Bob"))

>

> names(my.df)

[1] "pants" "name"

>

> colnames(my.df)

[1] "pants" "name"

>

> rownames(data)

[1] "1" "2" "3"

>

> nrow(data)

[1] 3

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 17 / 23

Data frames, continued more
Data frames are the bread-and-butter of R.
They are quite intuitive.

You can add a column to your data
frame by just referencing it.

Use the ”rbind” (”row bind”) function
to add a row to an existing data frame.

The rbind function expects 2 data
frames, with the same column names.

To combine two data frames with
dissimilar column names, use the
”merge” function.

> my.df$Socks <- "argyle"

> names(my.df)

[1] "pants" "name" "Socks"

>

> my.df

pants name Socks

1 3 Larry argyle

2 4 Susie argyle

3 5 Bob argyle

>

> my.df2 <- rbind(my.df, data.frame(pants = 6,

+ name = "Jane", Socks = "black"))

> my.df2

pants name Socks

1 3 Larry argyle

2 4 Susie argyle

3 5 Bob argyle

4 6 Jane black

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 18 / 23

Data frames, accessing columns
You can access the columns of a data
frame one of several ways:

Using the $ to indicate the column.

Using the string name of the column.

Using the index of the column.

You can use a vector of string column
names or indices to request multiple
columns.

Generally speaking, it’s easier to
remember the names of columns,
rather than column indices, so I
usually just use column names.

> str(trees)

’data.frame’: 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 ...

$ Height: num 70 65 63 72 81 83 66 ...

$ Volume: num 10.3 10.3 10.2 16.4 ...

>

> trees$Girth

[1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0 11.0 ...

> trees[, "Girth"]

[1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0 11.0 ...

> trees[, 1]

[1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0 11.0 ...

> trees[, c("Height", "Volume")]

Height Volume

1 70 10.3

2 65 10.3
.
.
.

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 19 / 23

Slicing data frames

Accessing parts of the data frame makes
a lot more sense when you remember
it’s just a named list of vectors.

Recall that data frames are 2
dimensional:

the first entry in the square
brackets is the row,

the second entry is the column.

We can use slicing to rip out the rows of
the data that we’re interested in.

>

> trees[1:3, "Girth"]

[1] 8.3 8.6 8.8

>

> trees[2,]

Girth Height Volume

2 8.6 65 10.3

>

> trees$Girth[trees$Height > 80]

[1] 10.7 10.8 12.9 13.3 17.3 17.5 20.6

>

> new.data <- trees[trees$Volume > 40 &

+ trees$Girth <= 14,]

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 20 / 23

Updating data frames

Performance tip: While you can update individual items in a data frame via direct access:

> data <- trees

> data[1, "Girth"] <- 8.7

It turns out this is extremely slow and memory intensive. If you have do a number of such
updates, try to minimize the number of updates to the data frame.

It’s better to extract a column, update it, and then update the whole column at once:

> Girth <- data$Girth

> Girth <- 2. * Girth + 1

> data$Girth <- Girth

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 21 / 23

Getting external data
Getting data from online is as simple as putting in the URL, or file name:

> data <- read.csv(”https://support.scinet.utoronto.ca/~ejspence/Dental-2011-2012.csv")

> str(data)
$ Quarter: Factor w/ 3 levels "Q1","Q2","Q3": 1 1 1 1 1 1 1 1 ...

.

.

.

$ Total : num 9317 14948 23136 18546 40536 ...

> colnames(data)
[1] "Quarter" "Year"

[3] "Data" "CCG Code"

[5] "AT CODE" "Region Code"

[7] "Patient type" "Band 1"

[9] "Band 2" "Band 3"

[11] "Urgent Occasional" "Free Arrest of Bleeding"

[13] "Free Bridge Repairs" "Free Denture Repair"

[15] "Free Prescription Issue" "Free Removal of sutures"

[17] "Total"

The original URL for this data is http://www.hscic.gov.uk/catalogue/PUB07163/nhs-dent-stat-udas-eng-2011-2012-anx5.csv.
Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 22 / 23

https://support.scinet.utoronto.ca/~ejspence/Dental-2011-2012.csv"
http://www.hscic.gov.uk/catalogue/PUB07163/nhs-dent-stat-udas-eng-2011-2012-anx5.csv

Excel files

You can also read Excel files using R,
though not out of box.

There are many packages out there that
will do this, but you’ll need to download
them separately.

readxl

gdata

XLConnect

xlsx

It is good practice, if your data is in
Excel, to input your data into Excel but
do all of your analysis in R.

>

> install.packages("readxl")

>

> library(readxl)

>

> data = read excel(’marks.xls’, sheet = 1)

>

> is.data.frame(data)

[1] TRUE

>

> names(data)

[1] "First Name" "Last Name" "username" "Mark"

[4] "Date submitted" "Days late" "Comments"

>

Erik Spence (SciNet HPC Consortium) Vectors and data frames 17 September 2020 23 / 23

	Vectors
	Creating vectors
	Sample
	Indexing
	Boolean indexing
	Appending
	NA
	Vectorization
	Recycling

	Data Frames
	Data Frames
	Slicing
	External data
	Excel files

