
Introduction to Computational BioStatistics with R:
introduction to R

Erik Spence

SciNet HPC Consortium

15 September 2020

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 1 / 23

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
on the right, under Lectures, ”Intro to R”.

https://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 2 / 23

https://support.scinet.utoronto.ca/education

Today’s class

Today we will visit the following topics:

Introduction to R.

Getting R started.

Primitive data types.

Container types.

The point of today’s class is to introduce you to R, and review the major data types. Please
stop me if you have a question.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 3 / 23

Computer programs

Let’s start at the very very beginning: what is a computer program?

A computer program is a set of instructions which tell the computer what to do.

Generally speaking, for scientific computing, you define variables, which contain your
data, and perform operations on those variables to do the calculations which you need.

You also define your own personal functions, which you will then re-use over and over
with different parameters (different arguments).

There are about a bazillion programming languages out there, each with their own
strengths and weaknesses.

As you know, we will begin by using R as the programming language in this class.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 4 / 23

R history

R has been around for a while, and is well-developed:

Introduced in 1996 as an evolution of the S language.

R is designed for exploring and analysing data.

Home page: http://www.r-project.org.

Community packages are stored at CRAN - Comprehensive R Archive Network.

Bioinformatics packages are also stored at http://bioconductor.org.

A new full version of R is released each year. We’re currently on release 4.0.2.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 5 / 23

http://www.r-project.org
http://bioconductor.org

About R

Some important things to know about R:

R is a scripting language (like the Linux shell), meaning an interpreter executes
commands one line at a time (not a compiled language).

R can be used interactively, with or without an IDE (RStudio).

R can also be used non-interactively, run through scripts.

R has a large repository of community packages.

R is all about data analysis: it is not a general purpose language.
I Several important features (numerics, visualization) are baked into the language, not add-ons.
I Not as useful outside of number crunching.

R is designed with interactive data exploration in mind.
I Lots of surprising things ”just work” interactively.
I But this design can make it a little difficult to debug large non-interactive programs.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 6 / 23

Starting R

Start R now. This means opening a terminal and typing ”R” (Macs), or double-clicking on the
R symbol (Windows).

Raise your hand if you don’t think it’s working. You are welcome to follow along by entering
the commands on the slides, and playing with the output.

Alternatively, there are several graphical R interfaces available. These are handy, but we
generally don’t recommend them as in some cases they have serious drawbacks. However, you
are welcome to use them if you like.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 7 / 23

R data types: numeric

Once you start your session you will get an interactive prompt:

This is a different prompt from the ”shell” prompt. This
is the ”R” prompt.

As you enter commands the interpreter interprets them.

The ”<-” symbol is the assignment operator, thus
creating a variable.

As we saw with the Linux shell, variables hold values that
we want to use later.

You should read ”a <- 1” as ”a is assigned the value 1”.

If you just type the name of the variable, and hit Enter,
the value of the variable will be printed.

The ”[1]” is the index of the answer.

> a <- 1

> b <- 1.73

>

> a

[1] 1

>

> b

[1] 1.73

>

> a + b

[1] 2.73

>

> d <- a - b

>

> d

[1] -0.73

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 8 / 23

Assigning values, an aside

As said on the previous slide:

You should read ”a <- 1” as ”a is assigned the value 1”.

Whatever is on the right-hand side of the ”<-” is
evaluated first.

If there is a variable on the right-hand side of the ”<-”,
the value of the variable is put into the calculation,
before the value is assigned to the left-hand side.

In this case we are over-writing the previous value of the
’a’ variable with a new value.

If you don’t understand what’s going on on this slide, please
raise your hand.

>

> a <- 1

>

> a

[1] 1

>

> a <- a + 1

>

> a

[1] 2

>

> a <- (a / 2) + 3

>

> a

[1] 4

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 9 / 23

R has functions

Like all languages, R has built-in functions:

The ”typeof” function ”returns” the ’type’ of the
”argument”.

The ”argument” of the function is the thing in the
brackets.

The ”return value” of the function is the value
which the function ”gives back” when it’s finished
running.

If a returned value is not assigned to a variable R
will just print it.

If the function takes multiple arguments, they are
separated by commas.

>

> a

[1] 4

>

> typeof(a)

[1] "double"

>

> b <- typeof(a)

>

> b

[1] "double"

>

> is.numeric(a)

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 10 / 23

Function return values

Function return values are either assigned to a variable,
or printed!

If a returned value is not assigned to a variable R
will just print it.

This is true whether you are running functions on
the R command line, or in a script.

If your scripts start randomly printing things out,
it’s likely that you’re calling functions which return
a value, and the value is not getting assigned to a
variable.

Note that functions are not required to return
something.

>

> a

[1] 4

>

> typeof(a)

[1] "double"

>

> b <- typeof(a)

>

> b

[1] "double"

>

> is.numeric(a)

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 11 / 23

Help!

But what if you don’t know how to use the function, or don’t know the optional arguments?
You can use the help function, which is also accessed using ’?’:

>

> help(sum)

.

.

.

>

> ? sum
.
.
.

>

Press ’q’ to exit the help page (on a Linux system).

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 12 / 23

Types of programming

The type of programming you are doing is called ”interactive programming.” As mentioned
already, R uses an interpreter to interpret the commands you enter. As such, it’s possible to
interact with R directly.

R can also be run by writing a ”script”. This is a set of commands, contained in a text file,
which the interpreter reads and executes, line by line, as if you were typing the commands in
at the R command line. We will revisit this in a later class; these are the types of programs
you will submit for your homework.

There is a third type of programming, whereby the ”script” is ”compiled” into an executable
program. R is not a compiled language, it’s an interpreted language, and as such is not
capable of being run this way.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 13 / 23

R data types: strings

R has the usual non-numeric types as well:

Values in quotes are called ”strings”
(collections of characters).

R accepts single or double quotes.

”paste” converts the inputs to strings (if
it’s not already), concatenates them, and
returns them.

”cat” prints the arguments to the screen.
It also needs a newline character (\n).

Notice that these are built-in functions.

> e <- "hello"

> g <- ’world’

>

> mystring <- paste(e,g)

>

> print(mystring)

[1] "hello world"

>

> cat(e, g, ’\n’)

hello world

>

> typeof(e)

[1] "character"

>

> e + g

Error in e + g : non-numeric argument to

binary operator

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 14 / 23

Strings versus variable names

Don’t get confused between variables and
strings:

If a variable is assigned the value of a
string, it is assigned the value of a string.
The string has nothing to do with any
similarly-named variables.

When a variable is assigned another
variable, it’s assigned the variable’s value.

>

> a <- 1

>

> b <- "a"

>

> b

[1] "a"

>

> d <- a

>

> d

[1] 1

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 15 / 23

R data types: booleans

R has the usual non-numeric types as well:

TRUE and FALSE are called ”boolean”
values (sometimes called ”logical”).

The ”!” is the NOT operator. It returns
the opposite of the argument.

If you’re feeling clever, you can do math
on booleans.

> f <- FALSE

>

> f

[1] FALSE

>

> !f

[1] TRUE

>

> typeof(f)

[1] "logical"

>

> is.logical(f)

[1] TRUE

>

> TRUE + TRUE

[1] 2

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 16 / 23

R data types, continued

We’ve seen R’s primitive types:

”numeric”: floating types (double precision)

logicals (booleans, meaning TRUE/FALSE)

character strings

Some notes about some R features:

In R the idiomatic assignment operator is ”<-”.

logical literals are shouty (TRUE/FALSE, or T/F).

Variables can have periods in their names.

Comments are started with the # symbol (as with Python and bash).

Note that R is case sensitive (”A” is not the same as ”a”).

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 17 / 23

Dynamic typing

R uses dynamic variable typing.

This means that you can re-use a variable
over and over again.

Compiled languages do not have this
feature.

This is one of the reasons why interpreted
languages are much slower than compiled
languages.

It’s possible to re-define already-existing
functions which come with R. Don’t.

>

> a <- 1

>

> a

[1] 1

>

> a <- "pants"

>

> a

[1] "pants"

>

> a <- T

>

> a

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 18 / 23

R lists

Lists are the most basic ”container” data type
in R:

The ”list” function will generate a list
from the inputs.

Lists can be of mixed type.

”pi” is a builtin variable.

”str” stands for ”structure”. It gives a
description of the argument.

>

> l <- list(a, b, e, f, g, pi)

>

> str(l)

List of 6

$: logi TRUE

$: chr "a"

$: chr "hello"

$: logi FALSE

$: chr "world"

$: num 3.14

>

> is.list(l)

[1] TRUE

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 19 / 23

R lists, continued

The values of lists can be of various types,
including other lists.

Accessing individual items in a list is done
with [[]].

The number in the double square
brackets is called the ”index”.

Indexing starts at 1, as with most
scientific computing languages.

In R, the ”start:finish” notation returns a
sequence running from start to finish,
inclusive.

>

> l[[6]]

[1] 3.141593

>

> l[1:3]

[[1]]

[1] TRUE

[[2]]

[1] "a"

[[3]]

[1] "hello"

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 20 / 23

R lists, continued

The values of lists can be of various types - including lists. Note:

Lists can also be created with the ’c’ command (’combine’).

Indexing individual items in a list is done with [[]].

Indexing starts at 1, as with most scientific computing languages.

Slicing is done with [start:finish], and the last item is included.

Note that [[-1]] will return an error message.

What does slicing with a negative number do - eg, l[-1]?

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 21 / 23

R named lists

Named lists allow you to access elements
by name, rather than by index.

If you don’t finish your line in R, but hit
enter, it will display the ”+” symbol,
indicating that it’s waiting for more input.

You can access pieces of a named list
with the ”$”.

The ”names” function returns the names
of a named list, data frame, etc.

>

> named.list <- list(value = 5,

+ word = "text", number = 7.3)

> str(named.list)

List of 3
$ value : num 5

$ word : chr "text"

$ number: num 7.3

>

> named.list$value

[1] 5

> named.list[["number"]]

[1] 7.3

> names(named.list)

[1] "value" "word" "number"

>

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 22 / 23

Enough to get started

There’s obviously a lot more to learn about using R. In particular, there are 2 major container
types, vectors and data frames, which we’ll cover next class. Nonetheless, this is enough
functionality to get you started.

Erik Spence (SciNet HPC Consortium) Introduction to R 15 September 2020 23 / 23

	Getting started with R
	About R
	Starting R

	R data types
	Numeric
	Help
	Strings
	Booleans

	Container types
	Lists

