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Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Distributions”.

https://scinet.courses/1399
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Today’s class

Today we are going to begin our adventure in the world of statistics.

Distributions.

R functions for calculating distributions.

Hypothesis testing.

Type I and type II errors.

The *apply family of functions.

As with all classes, please stop me if you have a question.
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Statistics

To begin at the beginning: what is statistics?

Statistics is a collection of techniques for empirically describing populations, collections of
populations, and the relationships between them.

Usually we do not have the complete population at our disposal, we only have a sample of
the population.

We use this sample to draw conclusions about the true population from which the sample
was drawn, assuming that the sample is representative of the whole population.

We also use the sample to perform tests to determine the relationship between different
populations.

Right. No problem.
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Data come from distributions

We usually use a probability distribution to model our data. What is a probability distribution?

A probability distribution indicates the probability of a given event (or measurement, or
observation) happening.

There are two types of probability distributions:
▶ discrete: data come in individual steps, there are no data points between those steps (flips of

a coin, rolls of dice).
▶ continuous: data are real numbers, with decimal places.

All probability distributions have the following properties:
▶ The sum of all probabilities equals one.

⋆ Discrete:
∑

i P (xi) = 1
⋆ Continuous:

∫
ρ(x)dx = 1

▶ One minus the probability of something is the probability of not something.
P ′(x) = 1 − P (x)
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Discrete distributions

Discrete distributions apply when the data are
not continuous, the data come in discrete steps.

Binomial distribution:

P (x = k) =

(
n

k

)
pk (1 − p)n−k

where p is the probability of success, k is the
number of successes and n is the number of
attempts.

An example of this would be picking n marbles
out of a bag of red and black marbles, and
picking k red marbles.

Coin toss:

P (x) =

{
0.5, x = heads,

0.5, x = tails

Roll of a die:

P (x) =



1/6, x = 1,

1/6, x = 2,

1/6, x = 3,

1/6, x = 4,

1/6, x = 5,

1/6, x = 6
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Poisson distribution

The Poisson distribution is used for
discrete events that happen
infrequently. The probability of the
event happening must increase with
time.

Please do not use continuous
distributions for discrete variables!
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Poisson distribution (λ = 4):

P (x) =
λxe−λ

x!
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Continuous distributions
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Some distribution terminology
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Probability density function (PDF), ρ(x): the function which determines probability of getting
a particular value, X, from a continuous distribution, P (x = X) = ρ(x)dx.
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Some distribution terminology, continued
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Cummulative distribution function (CDF): the probability of getting a particular value of x

below a certain value, P (x < X) =
∫X
−∞ ρ(x)dx.
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Some distribution terminology, continued more
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Quantile function (QFn): given a probability q, the particular value of X such that
P (x < X) ≤ q.
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Some more distribution terminology

Symbol Continuous Discrete

expectation value E[f(x)]
∫∞
−∞ f(x)ρ(x)dx

∑
f(xi)P (xi)

mean µ
∫∞
−∞ xρ(x)dx

∑
xiP (xi)

variance σ2 E[(x − µ)2] E[(x − µ)2]

Note that for discrete distributions, where all cases are equally probable, P (xi) = 1
n
.

R comes with many built-in functions to calculate the usual quantities.

mean(), sd(), var()

min(), max()

summary()

As usual, type ”help(mean)” to learn how these functions can be used. Do NOT
use these function names as variables!
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Characteristic statistics
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A warning: many distributions are not centred. If the distribution of your data is not centred
the concept of a ’mean’ may not be meaningful.

The chi-squared distribution, shown here, is not centered or symmetric around its peak.
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Built-in datasets, an aside
R contains built-in datasets that can be used for practicing.

> data()

Data sets in package ‘datasets’:

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

BJsales.lead (BJsales) Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

.

.

.

>

> str(faithful)

data.frame’: 272 obs. of 2 variables:

$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...

$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...

>

Type ’q’ to get out of the ’data’ menu. DO NOT use ’data’ as a variable.
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R distribution functions
R has a tonne of distributions built into it. The syntax for using the distributions is fairly
consistent. To access a particular distribution, you use the following suffixes:

Uniform: unif

Normal: norm

Binomial: binom

Poisson: pois

and many many others

To access particular functions associated with those distributions, you use the prefixes:

Probability Distribution Function (PDF): d

Cummulative Distribution Function (CDF): p

Quantile Function (QFn): q

Random sampling from the distribution: r
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R distribution functions, continued

Distribution suffix PDF (d) CDF (p) QFn (q) Sample (r)

Normal norm dnorm pnorm qnorm rnorm

Uniform unif dunif punif qunif runif

Exponential exp dexp pexp qexp rexp

Poisson pois dpois ppois qpois rpois

Binomial binom dbinom pbinom qbinom rbinom

Note that most distributions take optional arguments which control their behaviour (use the
’help’ function to get details on how to use these functions).
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R distribution functions, examples

>

> # Normal distribution probabilities with

> # default values (mean = 0, sd = 1)

> dnorm(c(-2, 0, 2))

[1] 0.05399097 0.39894228 0.05399097

>

> # Normal distribution probabilities with

> # mean = 1, sd = 2

> dnorm(c(-2, 0, 2), mean = 1, sd = 2)

[1] 0.0647588 0.1760327 0.1760327

>

> # Value of normal distribution which

> # has a probability of 0.025

> qnorm(0.025)

[1] -1.959964

>

>

> # 4 random samples from the normal distribution

> # with default values (mean = 0, sd = 1)

> rnorm(4)

[1] -0.01890732 -1.51366406 1.00561637 -0.27690594

>

> # 4 random samples from the normal distribution

> # with mean = 1, sd = 2

> rnorm(4, mean = 1, sd = 2)

[1] 1.70841356 2.96691253 0.07857346 -0.87288538

>

> # 4 random samples from the Poisson distribution

> # with lambda = 20

> rpois(4, lambda = 20)

[1] 26 19 25 15

>
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Applied examples

Suppose that a given collection of
insects have weights that are
normally distributed with a

mean of 17.46 grams and

variance of 75.67 grams2.

What is the probability that a
randomly chosen insect within the
collection weighs more than 19
grams?

We follow these steps:

We use the cummulative distribution
function (CDF) to get the probability of
being less than 19 grams.

We then subtract this from 1 to get the
probability of being greater than 19 grams.

>

> p <- pnorm(19, mean = 17.46, sd = sqrt(75.67))

>

> 1 - p

[1] 0.4297405

>

Answer: 43%
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Applied examples, continued more

Suppose some widgets produced at
the Acme Factory have a probability
of 0.005 of being defective. The
widgets are shipped in boxes of 25.

What is the probability that a
box contains exactly 1 defective
widget?

What is the probability that a
box has at most 1 defective
widget?

Use a binomial distribution, since each widget is
either defective or not. The binomial distribution
takes two optional arguments:

size (the number of samples),

prob (the probabilty of something occuring).

>

> dbinom(1, size = 25, prob = 0.005)

[1] 0.1108317

>

> pbinom(1, size = 25, prob = 0.005)

[1] 0.9930519

>

Answer 1: 11% Answer 2: 99%
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Sample means, continuous variables

It’s very important to distinguish between sample statistics and population statistics. The
population is what we want to describe, but the sample from the population is what we have.

We often want to get statistics about the mean of our sampled data, x̄. For continuous
variables:

What is mean of the sampled means? Meaning, if we sampled from the population many
times, what would the mean of all the sampled subpopulation means be? Well, it turns
out to be just µ, the population mean.

What is the variance of the sampled means? It’s σ2/n, where n is the number of
samples, and σ2 is the population variance.

Which means, of course, that the standard deviation of the sampled mean is σ/
√
n. This

means that the more samples we have the better our estimate of the population mean will be.

Erik Spence (SciNet HPC Consortium) Distributions & Hypothesis Testing 5 February 2026 20 / 36



Sample means, continuous variables, continued
The previous slide assumed that we know
σ2, the population variance. But we
don’t. How do we get that?

We should use the sample variance,

s2 =
∑

(xi−x̄)2

n−1
.

Why n − 1, instead of n?

That’s what gives us σ2, meaning
s2 is an ”Unbiased Estimator”.

Note that the R ”var” command
uses n − 1 in its denominator.

Using n− 1 instead of n to calculate the
variance of the sample data is a better
estimate of the population variance.

> my.variance <- function(n, pop.var, divide.by) {
+ my.data <- rnorm(n, sd = sqrt(pop.var))

+ diffs <- (my.data - mean(my.data))**2

+ return(sum(diffs) / divide.by) }
> m <- 10000

> result <- rep(0, m)

> n <- 20

>

> for (i in 1:m) result[i] <- my.variance(n,

+ pop.var = 8, divide.by = n - 1)

> mean(result)

[1] 7.982732

>

> for (i in 1:m) result[i] <- my.variance(n,

+ pop.var = 8, divide.by = n)

> mean(result)

[1] 7.59985
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Calculating confidence intervals

Suppose that you’ve calculated the mean, x̄, of some
samples. What is our confidence interval on that µ?

To answer this question, we estimate the Standard Error

SE (x̄)2 =
s2

n

The 95% confidence interval, in which there is a 95%
chance the true mean of the population lies, is given by

µ ± 1.96 SE(x̄)

This is because 1.96 standard deviations is approximately
what contains 95% of the normal distribution.

>

> x <- trees$Girth
>

> my.mean <- mean(x)

>

> se2 <- var(x) / length(x)

>

> my.mean - 1.96 * sqrt(se2)

[1] 12.14368

>

> my.mean + 1.96 * sqrt(se2)

[1] 14.35309

>
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Calculating confidence intervals
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We select a confidence interval that includes 95% of the area under the Gaussian.
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Hypothesis testing

How do I perform statistical tests on my data?

Statistical tests are always testing against something.

The thing being tested against is called the Null Hypothesis, H0.

All hypothesis testing is done under the assumption that the Null Hypothesis is true.

The non-Null Hypothesis is called the Alternate Hypothesis, H1.

Every hypothesis test is attempting to answer the question: Should I reject the null
hypothesis?

You may have heard of the null hypothesis before. What are the characteristics of the null
hypothesis?

It represents NO change from the accepted state of things.

Whatever is ’normal’, or ’default’, is the null hypothesis.
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Hypothesis testing, example
Step 1: make a claim: ”He’s dead, Jim”, said Dr. McCoy to Captain Kirk. Under usual
circumstances this claim will involve some test statistic (mean, variance, etc.).

Step 2: determine if the claim being made is the null or alternative hypothesis.

Does this statement represent a change from the normal situation?

If yes, then it is the alternate hypothesis, H1.

If not, then it is the null hypothesis (the normal situation is that he is not dead), H0.

Step 3: make a decision (perform a test) to determine whether the null hypothesis should be
rejected or not rejected.

Reject H0: ”sufficient evidence to say the patient is dead”.

Fail to reject H0: ”insufficient evidence to say patient is dead”.

Note that we never accept the null hypothesis, we merely fail to reject it.

Example stolen from James Jones.
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Hypothesis testing, example, continued
Based on the two possible states (dead/alive) and the two possible decisions (reject H0/fail to
reject H0), there are 4 possible outcomes.

True state of nature

Decision H0 True (patient is not dead) H0 False (patient is dead)

Reject H0

Patient is not dead,
Sufficient evidence of death

Patient is dead,
Sufficient evidence of death

Fail to reject H0

Patient is not dead,
Insufficient evidence of death

Patient is dead,
Insufficient evidence of death

Or, in other words...

True state of nature

Decision H0 True H0 False

Reject H0 Dispose of a live person Dispose of a dead person

Fail to reject H0 Try to revive a live person Try to revive a dead person
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Hypothesis testing, example, continued more

True state of nature

Decision H0 True H0 False

Reject H0 Dispose of a live person Dispose of a dead person

Fail to reject H0 Try to revive a live person Try to revive a dead person

These cases are so common (and well-studied) that they have been given names.

True state of nature

Decision H0 True H0 False

Reject H0 Type I error (alpha) Correct assessment

Fail to reject H0 Correct assessment Type II error (beta)

Type I errors are usually considered more serious.
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How hypothesis tests work
Suppose we ask the question: does a certain antibiotic work at killing bacteria, in the lab?

The null hypothesis is that the antibiotic does not affect the bacteria population.

All measurements have errors, and there will be variations (randomness) in the data, so
even if there is no effect the average bacteria population differences between the two
measurements (before and after antibiotic application) will be non-zero.

We only have a real difference in bacteria populations if the difference we see is unlikely
to occur by chance if the real difference is zero.

The probability of a difference as big as we measure occurring when the null hypothesis of
no difference is true is called p-value. This is calculated with the test statistic:

t =
x − 0

s/
√
n

where s is the sample standard deviation, and x is the difference between the
population measurements, for a given sample, before and after antibiotic application.
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How hypothesis tests work, continued

Due to randomness, we expect x to have an approximate Gaussian distribution, with µ = 0 if
the null hypothesis is true.

Using our data, we calculate t.

This tells us how many standard deviations away from 0 our data is.

Using this, we can determine the probability that this value of t, or greater, would occur
if the null hypothesis is true.

This is our p-value.

This is equivalent to determining the probability of committing a Type I error (incorrectly
rejecting the null hypothesis).

For those familiar with these sorts of tests, this is an example of a paired two-sample t-test.
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Test significance, continued

The significance level (alpha) is used
to determine if the test statistic is far
enough out in the tails to reject the
null hypothesis.

Commonly used values of
significance are 0.05 and 0.01.

Most tests return a ”p-value”.
This is the probability of
commiting a Type I error, given
the input data.

If the p-value is less than the
significance, then the null
hypothesis can be rejected.
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You must decide what significance you are using
before you run the test!
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The *apply family of functions

The *apply family of functions make it very easy and fast to repeatedly apply a function to a
set of individual elements.

Many parallel routines are parallel versions of these higher-level functions.

lapply: apply a function to each element of a list or vector.

sapply: like lapply, but return a vector instead of a list.

apply: apply a function to rows, columns or elements of an array.

tapply: apply a function to subsets of a list or vector.

mapply: apply a function to the ”transpose” of a list.

Using these functions, rather than regular for loops, can significantly speed up calculations.
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lapply

The function lapply will
repeatedly apply a function to
each element of a list or vector.

Note that you only specify the
name of the function to be called
as the second argument. You
don’t give the function any
arguments, unless extra
arguments are needed by the
function, in which case they are
supplied to lapply, not the
function.

> mean.n.rnorm <- function(n) return(mean(rnorm(n)))

>

> ns <- c(1, 10, 100, 1000)

>

> lapply(ns, mean.n.rnorm)

[[1]]

[1] -0.01890732

[[2]]

[1] 0.1327366

[[3]]

[1] -0.1007226

[[4]]

[1] -0.03226481

>
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sapply

I usually use sapply, as it returns a
vector rather than a list, which I
usually find more-convenient to use.

Note that if the function you are
calling using one of the *apply
functions takes more than one
argument, the extra arguments can
be listed in the *apply function after
the name of the function.

>

> ns <- c(1, 10, 100, 1000)

>

> random.nums <- lapply(ns, rnorm)

>

> sapply(random.nums, mean)

[1] 0.34134897 0.30397851 0.03475841 -0.01775784

>

> sapply(random.nums, sd, na.rm = TRUE)

[1] NA 0.9419855 0.8996367 1.0172488

>
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apply

The apply function is used on
matrices and arrays. It applies a
function to the rows (MARGIN = 1),
or columns (MARGIN = 2) of an
array.

>

> A <- matrix(1:9, nrow = 3)

>

> A

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

>

> apply(A, MARGIN = 1, max) # max of each row

[1] 7 8 9

>

> apply(A, MARGIN = 2, max) # max of each column

[1] 3 6 9

>
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apply, continued

The apply function can also be
applied to each element, using
MARGIN = 1:2.

If you have more than 2 dimensions
then those dimensions can also be
specified as an argument to
MARGIN.

>

> A <- matrix(1:9, nrow = 3)

>

> A

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

>

>

> apply(A, MARGIN = 1:2, function(x) return(x**2))

[,1] [,2] [,3]

[1,] 1 16 49

[2,] 4 25 64

[3,] 9 36 81

>
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Enough to get started

Today’s class went over the very beginning concepts needed to do statistics.

Almost all the commands are built into R already. If they aren’t in the base R installation,
they exist in a separate package.

The null hypothesis is the ”normal” situation, the situation where nothing has changed.

Hypothesis testing always assumes that the null hypothesis is true.

Tests determine the likelihood, given the data, of committing a Type 1 error.
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