Debugging

Ramses van Zon

PHY1610H Winter 2026

Ramses van Zon Debugging PHY1610H Winter 2026 1/23

What if your program or test isn’t running correctly. ..

® Nonsense. All programs execute “correctly”. T DONT UNDERSTAND || BUT MYBRAN 15 | | ISTHRT A PROBIEV?
_ , , HOW MY BRAN UORKS, | | WHAT T. RELY ON IM NoT
® We just told it to do the wrong thing. To UNDERSTAND me%ﬁ‘:

e Debugging is the art of reconciling your
mental model of what the code is doing with
what you actually told it to do.

HOW THINGS WORK.)

https://imgs.xkcd.com /comics/debugger.png

Debugger: program to help detect errors in other programs.

Ramses van Zon Debugging PHY1610H Winter 2026 2/23

Some common issues

Arithmetic Corner cases (sqrt(-0.0)), infinities
Memory access Index out of range, uninitialized pointers
Logic Infinite loop, corner cases

Misuse Wrong input, ignored error, no initialization
Syntax Wrong operators/arguments
Resource starvation Memory leak, quota overflow
Parallel Race conditions, deadlock

Ramses van Zon Debugging

Debugging workflows

® As soon as you are convinced there is a real problem, create the simplest situation in which it
repeatedly occurs.

e Take a scientific approach: model, hypothesis, experiment, conclusion.

e Try a smaller problem size, turning off different physical effects with options, etc, until you have a
simple, fast, repeatable example.

e Try to narrow it down to a particular module/function/class.

e Integrated calculation: Write out intermediate results, inspect them.

Ramses van Zon Debugging

Ways to debug

To figure out what is going wrong, and where in the code, we can
© Put strategic print statements in the code.
© Use a debugger.

We don't like the first option.

Ramses van Zon Debugging

What's wrong with using print statements?

Uses the following strategy Problems with this approach

A bug is always unexpected, so you don't know

* Constant cycle:
where to put those strategic print statements.

strategically add print statements

compile As a result, this approach:

run ® is time consuming

analyze output ® is error prone

® is confusing as print output might not

repeat
appear when you think

* Removing the extra code after the bug is
fixed ® changes memory layout, output format,

timing, etc.
® Repeat for each bug S

There’s a better way!

Ramses van Zon Debugging

Debuggers
are programs that can show what happens in a program at runtime.
Features

© Crash inspection

& Function call stack

© Step through code

@ Automated interruption

© Variable checking and setting

Should you use a graphical/IDE debugger?

® Local work station: graphical/IDE is convenient
® Remotely (SciNet): can be slow or hard to set up.

® In any case, graphical and text-based debuggers use the same concepts.

Ramses van Zon Debugging PHY1610H Winter 2026 7/23

Debuggers

Preparing the executable for debugging

* Add required compilation flags,
(both in compiling and linking!)

* Recommended: switch off optimization

Command-line based symbolic debugger: gdb

e Free, GNU license, symbolic debugger.
* Available on many systems.
Been around for a while, but still developed and up-to-date

* Command-line based, does not show code listing by default, unless you use the option.

Ramses van Zon Debugging PHY1610H Winter 2026 8/23

SETNIIE

Consider this code: When run, it shows the following:
// crashex.cpp $./crashex -h
#include <print> Usage: crashex [-h]
void handle_command_line(int argc, char* argv[]){
if (argv[11[0] == '-' && argv[1]1[1] == 'h') { $./crashex
// print help Segmentation fault (core dumped)
std::println("Usage: crashex [-h]\n");
b jise { The first invocation works, but the second fails.
¥ Why?

I

int main(int argc, charx* argv) {
handle_command_line(argc,argv) ;
// ...

}

which we compile on Teach with:

$ module load gcc/14.3
$ g++ -std=c++23 -00 -g crashex.cpp -o crashex

Ramses van Zon Debugging

Crash inspection

$./crashex
Segmentation fault (core dumped)

We want to solve this segmentation fault.

o A means that your application is trying to access data at an invalid memory
location.

e When the operating system detects the invalid memory location, it kills the application in that case
and produces a

e The core contains the process’'s memory state, call stack, and failure mode at the moment of the
crash, like a “black box".

Ramses van Zon Debugging

Missing the core file?

Core size limit

If the error message did not say core dumped, you need to set the limit

ulimit -c unlimited

Still no core file?

Core dump files used to always appear in the current directory with a name starting with core followed by
the process ID.

Modern Linux distribution, handle core dumps in a variety of ways, but the original way is most
convenient for debugging.

For Ubuntu and RedHat, the old default behaviour can be restored with the following command:

$ sudo sysctl -w kernel.core_pattern=core.’%p

Ramses van Zon Debugging

Inspecting the crash with gdb

To inspect the crash, use the command followed by the name of the application and the name of the
core file, e.g. on Teach:

$ gdb ./crashex core.teach-loginO1l.crashex.203739

GNU gdb (Gentoo 13.2 vanilla) 13.2

<A header with general gdb information>

Reading symbols from ./crashex...

[New LWP 203739]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/cvmfs/soft.computecanada.ca/gentoo/2023/x86-64-v3/usr/1ib64/libthread_d

Core was generated by ~./crashex’.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x0000559697c9fla7 in handle_command_line (argc=1, argv=0x7ffda30£8c98)
at crashex.cpp:4

4 if (argv[1][0] == '-' && argv[1][1] == 'h') {

(gdb)

This shows the error occured at line 4!

Ramses van Zon Debugging

if (argv[1][0] == '-' && argv[1][1] == 'h') {
// print help
std::cout << "Usage: crash_example [-h]\n";
} else {
/e
}

}
int main(int argec, char*x argv) {
handle_command_line(argc,argv);

o
}

exec No process In:

Reading symbols from crash_example...

[New LWP 352372]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Core was generated by °./crash_example'.

Program terminated with signal SIGSEGV, Segmentation fault.

40 90401140 in handle_command_line (argc=1, argv=0x7fff843co3bs)
at crash _example.cpp:4

Ramseb i Zo Debugging PHY1610H Winter 2026 13/23

Function Call Stack:

One of the commands availble at the gdb prompt is backtrace:

(gdb) backtrace
#0 0x0000559697c9f1a7 in handle_command_line (argc=1, argv=0x7ffda30f8c98)

at crashex.cpp:4
#1 0x0000559697c9f204 in main (argc=1, argv=0x7ffda30£8c98)

at crashex.cpp:12

This shows the line of the crash again, but also how the code got there, i.e., from line 12 in the main
function in the file crashex. cpp.

Note:

e Hexadecimal numbers at the beginning of the lines refer to positions in the executable.

® The backtrace also shows the values of the arguments, with pointers printed as hexadecimal memory
addresses.

Ramses van Zon Debugging

Checking Variables:

The printed values of the arguments given by the backtrace do not help us.
But it would be helpful to known the values that occur in line 4 where the crash happens.
The gdb command for this is , which makes print statements in the code unncessary for debugging.

Let's try it here:

(gdb) print argv([1][0]
Cannot access memory at address 0x0

This should be a surprise; where does an address 0x0 come from?

Let's try this:

(gdb) print argvl[i]
0x0

This is a solid clue on what the bug is: we are dereferencing a null pointer.

The bug is that the code did not check if a first argument is actually present.

Ramses van Zon Debugging

Stepping Through Code

The debugger can also execute the code line-by-line, but the code has already crashed.

So we exit the debugger with the command, and start it again without the core file:

$ gdb -tui -quiet ./crashex

GNU gdb (GDB) 13.2

Reading symbols from ./crashex...
(gdb)

It shows the code, but nothing has started running yet.
We can now type , which would run the code, but it would just lead to the crash again.

Instead, we want to pause at the start of main, which the command does:

(gdb) start
Temporary breakpoint 1 at O0x11f3: file crashex.cpp, line 12.
Starting program: /home/rzon/crashex
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1ib/x86_64-linux-gnu/libthread_db.so.1".
Temporary breakpoint 1, main (argc=1, argv=0x7fffffffc3c8)
at crashex.cpp:12
12 handle_command_line(argc,argv) ;

Ramses van Zon Debugging PHY1610H Winter 2026 16 /23

Stepping Through Code (cont.)

The executation is now paused at line 12, which has not yet been executed.
When execution is paused, we can print expressions, but we can now also step forward in the code.
For this, there are two commands:

. executes this whole line, which in this case would again lead to the crash.
. will step into any function calls on the line, i.e., it will pause at the first line of the first
function call in the line.

Let's try step here:

(gdb) step
handle_command_line (argc=1, argv=0x7fffffffc3c8) at crashex.cpp:4
4 if (argv[1][0] == '-' && argv[1]1[1] == 'h') {

which is indeed the first line of the function handle_command_line that was called from line 12.

Whenever the code is paused, we can print variables and expressions, but this time,
before the crash has occured.

Ramses van Zon Debugging PHY1610H Winter 2026

Breakpoints

If you have a code where a crash or bug occurs only after the process has run for a while, having to step
through the code from the start would be very inefficient.

Instead, you can setup an automated interruption called a at either a line or code or a
function, and run the code until just before that point is executed.
The command sets this up. E.g.

(gdb) break 4
Breakpoint 2 at 0x55555555519c: file crashex.cpp, line 4.

(gdb) break handle_command_line
Note: breakpoint 2 also set at pc 0x55555555519c.
Breakpoint 3 at 0x55555555519c: file crashex.cpp, line 4.

You can unset a breakpoint with the command, e.g. delete 3.

Ramses van Zon Debugging

Breakpoints (cont.)

With a breakpoint set, we can now run the code with

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/rzon/crashex

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 2, handle_command_line (argc=1, argv=0x7fffffffc3c8)
at crashex.cpp:4
4 if (argv[1]1[0] == '-' && argv[1][1] == 'h') {

As this example shows, the command will ask you if you want to restart the application if it was
already running.

If instead of starting from the start, you wanted to continue from where the code was, use the
command instead.

Ramses van Zon Debugging

Setting Variables

When the program is paused in gdb, you can change the values of variables as well with

This will change the execution of the code and can be useful for experimentation, but keep in mind that
this also makes the debugging process harder to reproduce.

For example, we could set the value of argv[1] to something valid:

(gdb) print argv[i]

$1 = 0x0

(gdb) set argv[i] = "-h"

(gdb) p argv([i]
$2 = 0x55555556aeb0 "-h"

(gdb) continue

Continuing.

Usage: crashex [-h]

[Inferior 1 (process 215420) exited normally]

Note: Here “Inferior” merely refers to the fact that the code was run under gdb.

Ramses van Zon Debugging PHY1610H Winter 2026

GDB command summary

Ramses van Zon

help

run

start
backtrace
break
delete
continue
list

step

next
print
display
finish
set variable
down
until

up

watch
quit

h
r
start

B un H o oo

P
disp
fin
set var
do
unt
up
wa

q

print description of command
run from beginning (+args)
run from main
function call stack
set breakpoint
delete breakpoint
continue
print part of the code
step into function
continue until next line
print variable
print variable at every prompt
continue until function end
change variable
go to called function
continue until line/function
go to caller
stop if variable changes
quit gdb

Debugging

Graphical debuggers

DDT: commercial, on SciNet, part of “Linaro
Forge”; good for parallel debugging.

module load ddt-cpu

DDD: free, bit old, can do serial and threaded
debugging.
module load ddd

Aiines 55T V3.1 (on gpe-fioIno8s)

ared(f)

Threads

Next | Nt

Ut

Undo
Edt

Sadn
Cadb)"gr
(adb) graph c

ching to Thr
Breakpoint 1, main.om.
Cadb)

A Display 3: th (enabled, st

PHY1610H Winter 2026 22/23

Ramses van Zon Debugging

Tips to avoid debugging

e Write better code.

» simple, clear, straightfoward code.
» modularity (avoid global variables and 10,000 line functions).
» avoid “cute tricks”.

e Don't write code, use existing libraries.

e Write (simple) tests for each module.

e Use version control and small commits.

e Switch on the warnings, and understand them all, or better, fix them.

Tip: use -Wall -Werror -Wfatal-errors to stop at the first warning.

e Use defensive programming: #include <cassert>
#include <cmath>

Check arguments, use assert (which can be double mysqrt(double x) {
switched of with ~DNDEBUG compilation flag) assert (x>=0) ;

E.g.: , return sqrt(x);

Ramses van Zon Debugging PHY1610H Winter 2026 23/23

