
Debugging

Ramses van Zon

PHY1610H Winter 2026

Ramses van Zon Debugging PHY1610H Winter 2026 1 / 23

What if your program or test isn’t running correctly. . .

Nonsense. All programs execute “correctly”.

We just told it to do the wrong thing.

Debugging is the art of reconciling your
mental model of what the code is doing with
what you actually told it to do.

https://imgs.xkcd.com/comics/debugger.png
Debugger: program to help detect errors in other programs.

Ramses van Zon Debugging PHY1610H Winter 2026 2 / 23

Some common issues

Arithmetic Corner cases (sqrt(-0.0)), infinities
Memory access Index out of range, uninitialized pointers
Logic Infinite loop, corner cases
Misuse Wrong input, ignored error, no initialization
Syntax Wrong operators/arguments
Resource starvation Memory leak, quota overflow
Parallel Race conditions, deadlock

Ramses van Zon Debugging PHY1610H Winter 2026 3 / 23

Debugging workflows

As soon as you are convinced there is a real problem, create the simplest situation in which it
repeatedly occurs.

Take a scientific approach: model, hypothesis, experiment, conclusion.

Try a smaller problem size, turning off different physical effects with options, etc, until you have a
simple, fast, repeatable example.

Try to narrow it down to a particular module/function/class.

Integrated calculation: Write out intermediate results, inspect them.

Ramses van Zon Debugging PHY1610H Winter 2026 4 / 23

Ways to debug

To figure out what is going wrong, and where in the code, we can
1 Put strategic print statements in the code.
2 Use a debugger.

We don’t like the first option.

Ramses van Zon Debugging PHY1610H Winter 2026 5 / 23

What’s wrong with using print statements?

Uses the following strategy

Constant cycle:
▶ strategically add print statements
▶ compile
▶ run
▶ analyze output
▶ repeat

Removing the extra code after the bug is
fixed

Repeat for each bug

Problems with this approach

A bug is always unexpected, so you don’t know
where to put those strategic print statements.

As a result, this approach:

is time consuming

is error prone

is confusing as print output might not
appear when you think

changes memory layout, output format,
timing, etc.

There’s a better way!

Ramses van Zon Debugging PHY1610H Winter 2026 6 / 23

Debuggers
are programs that can show what happens in a program at runtime.

Features

1 Crash inspection
2 Function call stack
3 Step through code
4 Automated interruption
5 Variable checking and setting

Should you use a graphical/IDE debugger?

Local work station: graphical/IDE is convenient

Remotely (SciNet): can be slow or hard to set up.

In any case, graphical and text-based debuggers use the same concepts.

Ramses van Zon Debugging PHY1610H Winter 2026 7 / 23

Debuggers

Preparing the executable for debugging

Add required compilation flags, -g

(both in compiling and linking!)

Recommended: switch off optimization -O0

Command-line based symbolic debugger: gdb

Free, GNU license, symbolic debugger.

Available on many systems.

Been around for a while, but still developed and up-to-date

Command-line based, does not show code listing by default, unless you use the -tui option.

Ramses van Zon Debugging PHY1610H Winter 2026 8 / 23

Example
Consider this code:
// crashex.cpp
#include <print>
void handle_command_line(int argc, char* argv[]){

if (argv[1][0] == '-' && argv[1][1] == 'h') {
// print help
std::println("Usage: crashex [-h]\n");

} else {
//

}
}
int main(int argc, char** argv) {

handle_command_line(argc,argv);
// ...

}

which we compile on Teach with:
$ module load gcc/14.3
$ g++ -std=c++23 -O0 -g crashex.cpp -o crashex

When run, it shows the following:
$./crashex -h
Usage: crashex [-h]

$./crashex
Segmentation fault (core dumped)

The first invocation works, but the second fails.

Why?

Ramses van Zon Debugging PHY1610H Winter 2026 9 / 23

Crash inspection

$./crashex
Segmentation fault (core dumped)

We want to solve this segmentation fault.

A segmentation fault means that your application is trying to access data at an invalid memory
location.

When the operating system detects the invalid memory location, it kills the application in that case
and produces a core dump.

The core contains the process’s memory state, call stack, and failure mode at the moment of the
crash, like a “black box”.

Ramses van Zon Debugging PHY1610H Winter 2026 10 / 23

Missing the core file?

Core size limit

If the error message did not say core dumped, you need to set the limit
ulimit -c unlimited

Still no core file?

Core dump files used to always appear in the current directory with a name starting with core followed by
the process ID.

Modern Linux distribution, handle core dumps in a variety of ways, but the original way is most
convenient for debugging.

For Ubuntu and RedHat, the old default behaviour can be restored with the following command:
$ sudo sysctl -w kernel.core_pattern=core.%p

Ramses van Zon Debugging PHY1610H Winter 2026 11 / 23

Inspecting the crash with gdb

To inspect the crash, use the gdb command followed by the name of the application and the name of the
core file, e.g. on Teach:
$ gdb ./crashex core.teach-login01.crashex.203739

GNU gdb (Gentoo 13.2 vanilla) 13.2
<A header with general gdb information>
Reading symbols from ./crashex...
[New LWP 203739]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/cvmfs/soft.computecanada.ca/gentoo/2023/x86-64-v3/usr/lib64/libthread_db.so.1".
Core was generated by `./crashex`.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x0000559697c9f1a7 in handle_command_line (argc=1, argv=0x7ffda30f8c98)

at crashex.cpp:4
4 if (argv[1][0] == '-' && argv[1][1] == 'h') {
(gdb)

This shows the error occured at line 4!

Ramses van Zon Debugging PHY1610H Winter 2026 12 / 23

Tip: start gdb with -tui -quiet options

Ramses van Zon Debugging PHY1610H Winter 2026 13 / 23

Function Call Stack:

One of the commands availble at the gdb prompt is backtrace:
(gdb) backtrace
#0 0x0000559697c9f1a7 in handle_command_line (argc=1, argv=0x7ffda30f8c98)

at crashex.cpp:4
#1 0x0000559697c9f204 in main (argc=1, argv=0x7ffda30f8c98)

at crashex.cpp:12

This shows the line of the crash again, but also how the code got there, i.e., from line 12 in the main
function in the file crashex.cpp.

Note:

Hexadecimal numbers at the beginning of the lines refer to positions in the executable.

The backtrace also shows the values of the arguments, with pointers printed as hexadecimal memory
addresses.

Ramses van Zon Debugging PHY1610H Winter 2026 14 / 23

Checking Variables:
The printed values of the arguments given by the backtrace do not help us.

But it would be helpful to known the values that occur in line 4 where the crash happens.

The gdb command for this is print, which makes print statements in the code unncessary for debugging.

Let’s try it here:
(gdb) print argv[1][0]
Cannot access memory at address 0x0

This should be a surprise; where does an address 0x0 come from?

Let’s try this:
(gdb) print argv[1]
0x0

This is a solid clue on what the bug is: we are dereferencing a null pointer.

The bug is that the code did not check if a first argument is actually present.

Ramses van Zon Debugging PHY1610H Winter 2026 15 / 23

Stepping Through Code
The debugger can also execute the code line-by-line, but the code has already crashed.

So we exit the debugger with the quit command, and start it again without the core file:
$ gdb -tui -quiet ./crashex
GNU gdb (GDB) 13.2
Reading symbols from ./crashex...
(gdb)

It shows the code, but nothing has started running yet.

We can now type run, which would run the code, but it would just lead to the crash again.

Instead, we want to pause at the start of main, which the start command does:
(gdb) start
Temporary breakpoint 1 at 0x11f3: file crashex.cpp, line 12.
Starting program: /home/rzon/crashex
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Temporary breakpoint 1, main (argc=1, argv=0x7fffffffc3c8)
at crashex.cpp:12

12 handle_command_line(argc,argv);

Ramses van Zon Debugging PHY1610H Winter 2026 16 / 23

Stepping Through Code (cont.)
The executation is now paused at line 12, which has not yet been executed.

When execution is paused, we can print expressions, but we can now also step forward in the code.

For this, there are two commands:

next executes this whole line, which in this case would again lead to the crash.
step will step into any function calls on the line, i.e., it will pause at the first line of the first
function call in the line.

Let’s try step here:
(gdb) step
handle_command_line (argc=1, argv=0x7fffffffc3c8) at crashex.cpp:4
4 if (argv[1][0] == '-' && argv[1][1] == 'h') {

which is indeed the first line of the function handle_command_line that was called from line 12.

Whenever the code is paused, we can print variables and expressions, but this time,
before the crash has occured.

Ramses van Zon Debugging PHY1610H Winter 2026 17 / 23

Breakpoints

If you have a code where a crash or bug occurs only after the process has run for a while, having to step
through the code from the start would be very inefficient.

Instead, you can setup an automated interruption called a break point at either a line or code or a
function, and run the code until just before that point is executed.

The break command sets this up. E.g.
(gdb) break 4
Breakpoint 2 at 0x55555555519c: file crashex.cpp, line 4.

(gdb) break handle_command_line
Note: breakpoint 2 also set at pc 0x55555555519c.
Breakpoint 3 at 0x55555555519c: file crashex.cpp, line 4.

You can unset a breakpoint with the delete command, e.g. delete 3.

Ramses van Zon Debugging PHY1610H Winter 2026 18 / 23

Breakpoints (cont.)

With a breakpoint set, we can now run the code with run.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/rzon/crashex
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 2, handle_command_line (argc=1, argv=0x7fffffffc3c8)
at crashex.cpp:4

4 if (argv[1][0] == '-' && argv[1][1] == 'h') {

As this example shows, the run command will ask you if you want to restart the application if it was
already running.

If instead of starting from the start, you wanted to continue from where the code was, use the continue
command instead.

Ramses van Zon Debugging PHY1610H Winter 2026 19 / 23

Setting Variables
When the program is paused in gdb, you can change the values of variables as well with set.

This will change the execution of the code and can be useful for experimentation, but keep in mind that
this also makes the debugging process harder to reproduce.

For example, we could set the value of argv[1] to something valid:
(gdb) print argv[1]
$1 = 0x0

(gdb) set argv[1] = "-h"

(gdb) p argv[1]
$2 = 0x55555556aeb0 "-h"

(gdb) continue
Continuing.
Usage: crashex [-h]
[Inferior 1 (process 215420) exited normally]

Note: Here “Inferior” merely refers to the fact that the code was run under gdb.

Ramses van Zon Debugging PHY1610H Winter 2026 20 / 23

GDB command summary
help h print description of command
run r run from beginning (+args)
start start run from main
backtrace ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
list l print part of the code
step s step into function
next n continue until next line
print p print variable
display disp print variable at every prompt
finish fin continue until function end
set variable set var change variable
down do go to called function
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

Ramses van Zon Debugging PHY1610H Winter 2026 21 / 23

Graphical debuggers
DDD: free, bit old, can do serial and threaded
debugging.
module load ddd

DDT: commercial, on SciNet, part of “Linaro
Forge”; good for parallel debugging.
module load ddt-cpu

Ramses van Zon Debugging PHY1610H Winter 2026 22 / 23

Tips to avoid debugging
Write better code.

▶ simple, clear, straightfoward code.
▶ modularity (avoid global variables and 10,000 line functions).
▶ avoid “cute tricks”.

Don’t write code, use existing libraries.

Write (simple) tests for each module.

Use version control and small commits.

Switch on the warnings, and understand them all, or better, fix them.

Tip: use -Wall -Werror -Wfatal-errors to stop at the first warning.

Use defensive programming:

Check arguments, use assert (which can be
switched of with -DNDEBUG compilation flag)
E.g.:

#include <cassert>
#include <cmath>
double mysqrt(double x) {

assert(x>=0);
return sqrt(x);

}

Ramses van Zon Debugging PHY1610H Winter 2026 23 / 23

