Version Control

Ramses van Zon

PHY1610 Winter 2026

Ramses van Zon Version Control PHY1610 Winter 2026 1/23

What is version control?

e Version control is a tool for managing changes in a set of files.
e Keeps historical versions.
Why use it?

Makes collaborating on code easier/possible/less violent.

Helps you stay organized.

Allows you to track changes in the code.

Allows reproducibility in the code.

Allows to maintain multiple versions in branches

Ramses van Zon Version Control

Types of version control workflows
Centralized Distributed
Every clone is a valid, complete repository

® One authoritative, central remote repository
e Can clone any repo

® Local clones that can check in changes - o) (e vy ey B seaelhva
differences
Examples: Examples: Git, Mercurial
Y5, Sulbression BV Seems great and flexible. But people like a
central repo for their sanity and for publishing
code.
In common

e They are equivalent when you're only working with one, local, repository

® One must be explicit in what file changes are tracked and when versions are commited.

® One can ask for history, and go backwards (and forwards) in time

Ramses van Zon Version Control PHY1610 Winter 2026 3/23

How does (central) version control work?

Repository
1. pushes code changes 3. pushes code changes
G}
Q‘? .
& 5
& &
5 o
& ¢
S %
2 2
¥ %
— Jen Dan |—

Ramses van Zon Version Control PHY1610 Winter 2026 4/23

Basic Change Commits (Local)

.

commit2
commit3 commit4

Commits store differences in the file.
Files that are not changed are not stored again.

Yet commits act as snapshots when you check them out.

Ramses van Zon Version Control PHY1610 Winter 2026 5/23

Checkout and edit

check out

commit3 commit4

commit
revert
working copy
You do not have direct access to the repo.
Instead, you checkout a working copy.

Once you are happy with your changes in the working copy,
you prepare stage and then apply the commit.

Ramses van Zon Version Control PHY1610 Winter 2026 6/23

Version control: git

There are many types and approaches to version control.
Here we will introduce one implementation: git.

https://git-scm.com

There are a few things we will cover in order to get started with git:
© How to get git;

How to initialize a git repository;

How to select files to be committed;

How to commit them to the repository;

The difference between the repo and working copies;

How to roll back to an older version;

How to inspect an older version;

®© ® &6 6 06 0

How to delete files from the repository;

© Where to find more information.
Ramses van Zon Version Control PHY1610 Winter 2026 7/23

https://git-scm.com

First things first: getting git

Linux Desktop
» sudo dnf/.../apt-get install git
MacOS

» Xcode
» fink/macports/homebrew
» git OSX installer

Windows (MobaXterm)

» MobaXterm: apt-get install git
» https://gitforwindows.org

SciNet clusters (Teach, Trillium, ...)

» Git is already installed.

Ramses van Zon Version Control

PHY1610 Winter 2026

https://gitforwindows.org

2. Setup your git identity

The first time you use git, it complains if it can't identify who you are!

Best to set identify your global self to git:

$ git config --global user.email "rzon@scinet.utoronto.ca"
$ git config --global user.name "Ramses van Zon"

Then git will mark any commits you make with your user name and email.

You can also set other preferences, e.g.

$ git config --global init.defaultBranch main

This ensures any initial branch will be called ‘main’ (instead of the default ‘master’).

Ramses van Zon Version Control PHY1610 Winter 2026 9/23

2. Create a local git repository

The first thing to do is for your code.

$ mkdir code # if there is no code yet
$ cd code

$ git init --initial-branch main # creates a repository for this directory, in the 'main' branch
Initialized empty Git repository in /home/.../code/.git/

This created a directory in the current directory.
.git is your (currently empty).
The current directory contains the (currently empty even if there are files in it) .

Note: You cannot see the .git directory with 1s unless you give the -a option, i.e.

$ 1s -a
.o..o.git
$

Ramses van Zon Version Control PHY1610 Winter 2026

Adding and committing to a git repo
3. Adding files to the repository

You have to files to the hidden

$ echo "some data" > filel.txt
$ cp filel.txt file2.txt

$ cp filel.txt file3.txt

$ 1s

filel.txt file2.txt file3.txt

$ git add filel.txt file2.txt # leave out file3.txt for now

4. Commiting to the repo

$ git commit -m "First commit for my repository"

[main (root-commit) dd9d139] First commit for my repository
2 files changed, 2 insertions(+)

create mode 100644 filel.txt

create mode 100644 file2.txt

Note: The working directory is not automatically tracked!

Ramses van Zon Version Control

PHY1610 Winter 2026

11/23

5. Comparing working files with the repo copy
Let's update some data and see how can we compare it with the already commited files. . .

$ echo "some more data" >> filel.txt

$ git diff filel.txt
diff --git a/filel.txt b/filel.txt
index 4268632..fdd9353 100644
--- a/filel.txt
+++ b/filel.txt
@@ -1 +1,2 @@
some data
+some more data

We're satisfied and want to add this change:

$ git add filel.txt
$ git commit -m "updating data due to ...

Files already in the repo are “tracked” and we can commit the changes with one command:

$ git commit -a -m "updating data due to ..."

Always add a descriptive message!(the examples above are bad!)

Ramses van Zon Version Control

Git status report

&

Kowalski, status report

Ramses van Zon

Review what has been done in the repo: git log

$ git log

commit b0292f6e3a820856f1d29b5ace2acdc4dfd9e73c9 (HEAD -> main)
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:50:01 2022 -0500

updating data due to ...
commit dd9d13999ac5073089e6ea4282b0c78854256bc1l
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:49:02 2022 -0500

First commit for my repository

Version Control PHY1610 Winter 2026 13/23

Detailed git status report

Detailed review what has been done: git log —stat

$ git log --stat

commit b0292f6e3a820856f1d29b5ace2acdc4dfd9e73c9 (HEAD -> main)
ﬁ Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:50:01 2022 -0500

updating data due to ...

filel.txt | 1 +

: 1 file changed, 1 insertion(+)

Kowalski, status report
commit dd9d13999ac5073089e6ea4282b0c78854256bc1l
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Commits are in reverse Date: Thu Jan 27 09:49:02 2022 -0500

chronological order.

. . First commit for my repository
Each commit has a hexadecimal

hash. filel.txt | 1 +
b0292f6e3a820856f1d29b5aee2acdcq file2.txt | 1 + ;
dd9d13999ac5073089e6ea4282b0c7e 2 files changed, 2 insertions(+)

Ramses van Zon Version Control PHY1610 Winter 2026 14 /23

Git working and staging area status

&

Kowalski, status report

Ramses van Zon

To check the status of files in the working and staging area, use

$ git status
On branch main
Untracked files:
(use "git add <file>..." to include in what will be committed)
file3.txt

nothing added to commit but untracked files present (use "git add" f

Look what happens if we add a file

$ git add file3.txt
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: file3.txt

Version Control PHY1610 Winter 2026 15/23

6. Rollback

If you have edited files but something broke and you have not yet committed,
you can bring the working copy back to the most recent commit:

$ git reset --hard

Rolling back to a specific previous version, you can be done with a

$ git reset dd9d13999ac5073089e6ea4282b0c78854256bcl —-hard

This erases the part of the history after dd9d13999ac5073089e6ea4282b0c78854256bc1!

To go to the previous version in the repo:

$ git reset HEAD" --hard

HEAD is the last commit in the history, HEAD" the one before that, HEAD" "~ the one before that etc.

Without the —-hard option, only the repo in .git is updated, but the files in the working directory would
not have been restored.

Note: Actually all the commits are still there in the repo, but without references to it,
so they are effectively gone (and eventually deleted).

Ramses van Zon Version Control PHY1610 Winter 2026

Reverting changes — Reset, Checkout, and Revert

git reset <Commit> # Throw away changes after Commit (consider '--hard')
git restore --staged <file> # Unstage a file i.e. undo an 'add'

git checkout <Commit> # Inspect old commit

git checkout <Branch> # Switch between branches

git checkout <File> # Discard changes in the working directory

git revert <Commit> # Create a new commit that undoes the given commit

By the way: nobody pretends git command are intuitive.

Ramses van Zon Version Control PHY1610 Winter 2026 17/23

7. Inspecting a specific previous version

To look at a previous commit temporarily, use the commit hash and do
$ git checkout dd9d13999ac5073089e6ea4282b0c78854256bcl

This does not update the main branch. To continue working on the main branch,do:

$ git checkout main

Ramses van Zon Version Control PHY1610 Winter 2026 18/23

8. Removing repository files

Let’s look at what we've done so far.

git log
commit b0292f6e3a820856f1d29bbaee2acdc4fd9e73c9 (HEAD -> main)
Author: Ramses van Zon <rzon@scinet.utoronto.ca>
Date: Thu Jan 27 09:50:01 2022 -0500
updating data due to ...

commit dd9d13999ac5073089e6ea4282b0c78854256bcl
Author: Ramses van Zon <rzon@scinet.utoronto.ca>
Date: Thu Jan 27 09:49:02 2022 -0500

First commit for my repository

$

If you want to delete a file in the working copy and the repo, use git rm:

$ git rm file2.txt # let git do it!
$ git commit -m "Remove file2.txt"
[main f1af560] removed file2.txt

1 file changed, 1 deletion(-)
delete mode 100644 file2.txt
$

ETHELCRTER VAT Version Control PHY1610 Winter 2026 19/23

9. Tips and more information on git

Commit often.

Include sensible commit messages.

It's easy to forget to add files, check with "git status”.

e Do not commit log files, executables, object files, etc..

® https://scinet.courses/1382

® https://www.vogella.com /tutorials/Git/article.html

e https://www.atlassian.com/git/tutorials

Ramses van Zon Version Control PHY1610 Winter 2026 20/23

https://scinet.courses/1382
https://www.vogella.com/tutorials/Git/article.html
https://www.atlassian.com/git/tutorials

Remote repositories

Version Control

PHY1610 Winter 2026

21/23

Remote repositories

e Git is a distributed version control system.

e You can a repo anywhere to copy it elsewhere.

e Each clone is a full-fledged repo with full history.

e You can and the state of one repo to another.

® You do not have to have one centralized, authoritive repo, but often, that is still convenient.
e Clones can live on remote computers or in the cloud (e.g. github, gitlab)

e Git can interact with remote repos using ssh (as well in other ways).

e Remote repos often don't need a working directory, they can be .git repos.

Ramses van Zon Version Control PHY1610 Winter 2026

Remote repositories: Clone, pull, push

® Setup a remote repo on a cluster

local>
teach>
teach>
teach>
teach>
teach>
teach>
teach>
teach>

ssh USERNAMEQ@teach.scinet.utoronto.ca

mkdir repo

cd repo

git init --initial-branch main

git config receive.denyCurrentBranch updateInstead
echo "hello" > world.txt

git add world.txt

git commit -m 'hello world'

exit

@ Clone it on your local computer:

local>
local>
local>
local>
local>
local>

git clone USERNAMEG@teach.scinet.utoronto.ca:repo
cd repo

echo "more" >> filel.txt

echo "most" >> file2.txt

git add filel.txt file2.txt

git commit -m "Added files"

Ramses van Zon Version Control

® Update the repo in teach:

local> git push -u origin main

Check:

local> ssh USRQteach.scinet.utoronto.ca
teach> cd repo

teach> git reset --hard

teach> 1s

world.txt filel.txt file2.txt

© Make changes on teach

teach> echo "even more data" >> filel.txt

teach> git add filel.txt
teach> git commit -m 'More data added'

© Update repo locally:
local> git pull

PHY1610 Winter 2026

	Remote repositories

