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What is version control?

e Version control is a tool for managing changes in a set of files.
e Keeps historical versions.
Why use it?

Makes collaborating on code easier/possible/less violent.

Helps you stay organized.

Allows you to track changes in the code.

Allows reproducibility in the code.

Allows to maintain multiple versions in branches
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Types of version control workflows
Centralized Distributed
# Every clone is a valid, complete repository

® One authoritative, central remote repository
e Can clone any repo

® Local clones that can check in changes - o ) (e vy ey B seaelhva
differences
Examples: Examples: Git, Mercurial
Y5, Sulbression BV Seems great and flexible. But people like a
central repo for their sanity and for publishing
code.
In common

e They are equivalent when you're only working with one, local, repository

® One must be explicit in what file changes are tracked and when versions are commited.

® One can ask for history, and go backwards (and forwards) in time
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How does (central) version control work?

Repository
1. pushes code changes 3. pushes code changes
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Basic Change Commits (Local)

.

commit2
commit3 commit4

Commits store differences in the file.
Files that are not changed are not stored again.

Yet commits act as snapshots when you check them out.
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Checkout and edit

check out

commit3 commit4

commit
revert
working copy
You do not have direct access to the repo.
Instead, you checkout a working copy.

Once you are happy with your changes in the working copy,
you prepare stage and then apply the commit.
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Version control: git

There are many types and approaches to version control.
Here we will introduce one implementation: git.

https://git-scm.com

There are a few things we will cover in order to get started with git:
© How to get git;

How to initialize a git repository;

How to select files to be committed;

How to commit them to the repository;

The difference between the repo and working copies;

How to roll back to an older version;

How to inspect an older version;

®© ® &6 6 06 0

How to delete files from the repository;

© Where to find more information.
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https://git-scm.com

First things first: getting git

Linux Desktop
» sudo dnf/.../apt-get install git
MacOS

» Xcode
» fink/macports/homebrew
» git OSX installer

Windows (MobaXterm)

» MobaXterm: apt-get install git
» https://gitforwindows.org

SciNet clusters (Teach, Trillium, ...)

» Git is already installed.
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https://gitforwindows.org

2. Setup your git identity

The first time you use git, it complains if it can't identify who you are!

Best to set identify your global self to git:

$ git config --global user.email "rzon@scinet.utoronto.ca"
$ git config --global user.name "Ramses van Zon"

Then git will mark any commits you make with your user name and email.

You can also set other preferences, e.g.

$ git config --global init.defaultBranch main

This ensures any initial branch will be called ‘main’ (instead of the default ‘master’).
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2. Create a local git repository

The first thing to do is for your code.

$ mkdir code # if there is no code yet
$ cd code

$ git init --initial-branch main # creates a repository for this directory, in the 'main' branch
Initialized empty Git repository in /home/.../code/.git/

This created a directory in the current directory.
.git is your (currently empty).
The current directory contains the (currently empty even if there are files in it) .

Note: You cannot see the .git directory with 1s unless you give the -a option, i.e.

$ 1s -a
.o..o.git
$
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Adding and committing to a git repo
3. Adding files to the repository

You have to files to the hidden

$ echo "some data" > filel.txt
$ cp filel.txt file2.txt

$ cp filel.txt file3.txt

$ 1s

filel.txt file2.txt file3.txt

$ git add filel.txt file2.txt # leave out file3.txt for now

4. Commiting to the repo

$ git commit -m "First commit for my repository"

[main (root-commit) dd9d139] First commit for my repository
2 files changed, 2 insertions(+)

create mode 100644 filel.txt

create mode 100644 file2.txt

Note: The working directory is not automatically tracked!
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5. Comparing working files with the repo copy
Let's update some data and see how can we compare it with the already commited files. . .

$ echo "some more data" >> filel.txt

$ git diff filel.txt
diff --git a/filel.txt b/filel.txt
index 4268632..fdd9353 100644
--- a/filel.txt
+++ b/filel.txt
@@ -1 +1,2 @@
some data
+some more data

We're satisfied and want to add this change:

$ git add filel.txt
$ git commit -m "updating data due to ...

Files already in the repo are “tracked” and we can commit the changes with one command:

$ git commit -a -m "updating data due to ..."

Always add a descriptive message!(the examples above are bad!)
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Git status report

&

Kowalski, status report

Ramses van Zon

Review what has been done in the repo: git log

$ git log

commit b0292f6e3a820856f1d29b5ace2acdc4dfd9e73c9 (HEAD -> main)
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:50:01 2022 -0500

updating data due to ...
commit dd9d13999ac5073089e6ea4282b0c78854256bc1l
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:49:02 2022 -0500

First commit for my repository
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Detailed git status report

Detailed review what has been done: git log —stat

$ git log --stat

commit b0292f6e3a820856f1d29b5ace2acdc4dfd9e73c9 (HEAD -> main)
ﬁ Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 27 09:50:01 2022 -0500

updating data due to ...

filel.txt | 1 +

: 1 file changed, 1 insertion(+)

Kowalski, status report
commit dd9d13999ac5073089e6ea4282b0c78854256bc1l
Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Commits are in reverse Date: Thu Jan 27 09:49:02 2022 -0500

chronological order.

. . First commit for my repository
Each commit has a hexadecimal

hash. filel.txt | 1 +
b0292f6e3a820856f1d29b5aee2acdcq file2.txt | 1 + ;
dd9d13999ac5073089e6ea4282b0c7e 2 files changed, 2 insertions(+)
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Git working and staging area status

&

Kowalski, status report

Ramses van Zon

To check the status of files in the working and staging area, use

$ git status
On branch main
Untracked files:
(use "git add <file>..." to include in what will be committed)
file3.txt

nothing added to commit but untracked files present (use "git add" f

Look what happens if we add a file

$ git add file3.txt
$ git status
On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: file3.txt
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6. Rollback

If you have edited files but something broke and you have not yet committed,
you can bring the working copy back to the most recent commit:

$ git reset --hard

Rolling back to a specific previous version, you can be done with a

$ git reset dd9d13999ac5073089e6ea4282b0c78854256bcl —-hard

This erases the part of the history after dd9d13999ac5073089e6ea4282b0c78854256bc1!

To go to the previous version in the repo:

$ git reset HEAD" --hard

HEAD is the last commit in the history, HEAD" the one before that, HEAD" "~ the one before that etc.

Without the —-hard option, only the repo in .git is updated, but the files in the working directory would
not have been restored.

Note: Actually all the commits are still there in the repo, but without references to it,
so they are effectively gone (and eventually deleted).
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Reverting changes — Reset, Checkout, and Revert

git reset <Commit> # Throw away changes after Commit (consider '--hard')
git restore --staged <file> # Unstage a file i.e. undo an 'add'

git checkout <Commit> # Inspect old commit

git checkout <Branch> # Switch between branches

git checkout <File> # Discard changes in the working directory

git revert <Commit> # Create a new commit that undoes the given commit

By the way: nobody pretends git command are intuitive.
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7. Inspecting a specific previous version

To look at a previous commit temporarily, use the commit hash and do
$ git checkout dd9d13999ac5073089e6ea4282b0c78854256bcl

This does not update the main branch. To continue working on the main branch,do:

$ git checkout main

Ramses van Zon Version Control PHY1610 Winter 2026 18/23



8. Removing repository files

Let’s look at what we've done so far.

# git log
commit b0292f6e3a820856f1d29bbaee2acdc4fd9e73c9 (HEAD -> main)
Author: Ramses van Zon <rzon@scinet.utoronto.ca>
Date: Thu Jan 27 09:50:01 2022 -0500
updating data due to ...

commit dd9d13999ac5073089e6ea4282b0c78854256bcl
Author: Ramses van Zon <rzon@scinet.utoronto.ca>
Date: Thu Jan 27 09:49:02 2022 -0500

First commit for my repository

$

If you want to delete a file in the working copy and the repo, use git rm:

$ git rm file2.txt # let git do it!
$ git commit -m "Remove file2.txt"
[main f1af560] removed file2.txt

1 file changed, 1 deletion(-)
delete mode 100644 file2.txt
$
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9. Tips and more information on git

Commit often.

Include sensible commit messages.

It's easy to forget to add files, check with "git status”.

e Do not commit log files, executables, object files, etc..

® https://scinet.courses/1382

® https://www.vogella.com /tutorials/Git/article.html

e https://www.atlassian.com/git/tutorials
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Remote repositories

e Git is a distributed version control system.

e You can a repo anywhere to copy it elsewhere.

e Each clone is a full-fledged repo with full history.

e You can and the state of one repo to another.

® You do not have to have one centralized, authoritive repo, but often, that is still convenient.
e Clones can live on remote computers or in the cloud (e.g. github, gitlab)

e Git can interact with remote repos using ssh (as well in other ways).

e Remote repos often don't need a working directory, they can be .git repos.
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Remote repositories: Clone, pull, push

® Setup a remote repo on a cluster

local>
teach>
teach>
teach>
teach>
teach>
teach>
teach>
teach>

ssh USERNAMEQ@teach.scinet.utoronto.ca

mkdir repo

cd repo

git init --initial-branch main

git config receive.denyCurrentBranch updateInstead
echo "hello" > world.txt

git add world.txt

git commit -m 'hello world'

exit

@ Clone it on your local computer:

local>
local>
local>
local>
local>
local>

git clone USERNAMEG@teach.scinet.utoronto.ca:repo
cd repo

echo "more" >> filel.txt

echo "most" >> file2.txt

git add filel.txt file2.txt

git commit -m "Added files"
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® Update the repo in teach:

local> git push -u origin main

Check:

local> ssh USRQteach.scinet.utoronto.ca
teach> cd repo

teach> git reset --hard

teach> 1s

world.txt filel.txt file2.txt

© Make changes on teach

teach> echo "even more data" >> filel.txt

teach> git add filel.txt
teach> git commit -m 'More data added'

© Update repo locally:
local> git pull
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