
Modular Programming

Ramses van Zon

PHY1610 Winter 2026

Ramses van Zon Modular Programming PHY1610 Winter 2026 1 / 32

Modular Programming

Ramses van Zon Modular Programming PHY1610 Winter 2026 2 / 32

Why does modular programming matter?

Scientific software can be large, complex and subtle.

E.g., sections for simulation parameters, system creation, initial conditions, output, time stepping, . . .

If each section uses the internal details of other sections, you must understand the entire code at
once to understand what the code in a particular section is doing.

(This is why global variables are bad bad bad!)

Interactions grow as (number of lines of code)2.

Ramses van Zon Modular Programming PHY1610 Winter 2026 3 / 32

Example: Monolythic code for hydrogen’s ground state
#include <print>
#include <fstream>
#include <rarray>
const int n = 4913;
rarray<double,2> m(n,n); rarray<double,1> a(n);
double b = 0.0;
void pw() {

auto q = make_rarray(n, 0.0);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
q[i] += m[i,j]*a[j];

for (int i = 0; i < n; i++)
a[i] = q[i];

}
double en() {

double e = 0.0, z = 0.0;
for (int i = 0; i < n; i++) {

z += a[i]*a[i];
for (int j = 0; j < n; j++)

e += a[i]*m[i,j]*a[j];
}
return b + (z?(e/z):0.0);

}

double H(int i, int j, int n);
int main() {

for (int i = 0; i < n; i++) {
a[i] = 1.0;
for (int j = 0; j < n; j++) {

m[i,j] = H(i,j,n);
}

}
for (int i = 0; i < n; i++)

if (m[i,i] > b)
b = m[i,i];

for (int i = 0; i < n; i++)
m[i,i] -= b;

for (int p = 0; p < 20; p++)
pw();

if (en() <= b) throw "Method failed";
std::println("Ground state energy={}", en());
std::ofstream f("data.txt");
std::println(f, "{}", a);
std::ofstream g("data.bin", std::ios::binary);
g.write((char*)(&a[0]), sizeof(a[0]));

}
// ...

Ramses van Zon Modular Programming PHY1610 Winter 2026 4 / 32

What is wrong with this code?
#include <print>
#include <fstream>
#include <rarray>
const int n = 4913;
rarray<double,2> m(n,n); rarray<double,1> a(n);
double b = 0.0;
void pw() {

auto q = make_rarray(n, 0.0);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
q[i] += m[i,j]*a[j];

for (int i = 0; i < n; i++)
a[i] = q[i];

}
double en() {

double e = 0.0, z = 0.0;
for (int i = 0; i < n; i++) {

z += a[i]*a[i];
for (int j = 0; j < n; j++)

e += a[i]*m[i,j]*a[j];
}
return b + (z?(e/z):0.0);

}

The hydrogen.cpp code uses functions.
Is that not modular?
No, not by itself. A few bad things:

Global variables n,m,a,b.

All code in one single file.

No comments.

Not clear what part does what, or what part
needs which variables.

Cryptic variable and function names.

Hard-coded filenames and parameters.

What’s this “rarray”?

Rarray provides multidimensional arrays.
https://raw.githubusercontent.com/vanzonr/rarray/mai
n/rarray

Ramses van Zon Modular Programming PHY1610 Winter 2026 5 / 32

https://raw.githubusercontent.com/vanzonr/rarray/main/rarray
https://raw.githubusercontent.com/vanzonr/rarray/main/rarray

Modularity

Who cares, you might say, as long as it runs? But:

Code is not written for a computer but for humans.

Code almost never a one-off.

That’s why you must enforce boundaries between sections of code so that you have self-contained
modules of functionality.

This is not just for your own sanity. There are added benefits:

Each section can then be tested individually, which is significantly easier.

Makes rebuilding software more efficient.

Makes version control more powerful.

Makes changing and maintaining the code easier.

Ramses van Zon Modular Programming PHY1610 Winter 2026 6 / 32

A simple example of modularization
The code writes out the array in binary and text formats.Let’s start with putting those parts in functions.
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>

void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 7 / 32

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract function declarations.
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>

void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {
std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 8 / 32

A simple example of modularization
The code writes out the array in binary and text formats. Let’s extract declarations.
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);
void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 9 / 32

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);
void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 10 / 32

A simple example of modularization
The code writes out the array in binary and text formats. Function definitions can be moved.
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}
void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 11 / 32

A simple example of modularization
The code writes out the array in binary and text formats. We’re ready to make a module now!
//hydrogen.cpp
#include <print>
#include <fstream>
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);
//...
int main() {

//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}
void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 12 / 32

Creating the module
To create our own module, put the declarations for the functions in their own ’header’ file.
//output.h
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);

The source code with the definitions of the functions should be put into its own separate file.
//output.cpp
#include "output.h"
#include <print>
#include <fstream>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream g(s, std::ios::binary);
g.write((char*)(&x[0]), n*sizeof(x[0]));

}
void writeText(const std::string& s, int n, const rarray<double,1>& x) {

std::ofstream f(s);
std::println(f, "{}", a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 13 / 32

Using the module

The original code that uses these would look like:
//hydrogen.cpp
#include <print>
#include <rarray>
#include "output.h"

//...

int main() {
//...
writeText("data.txt", n, a);
writeBinary("data.bin", n, a);

}

Ramses van Zon Modular Programming PHY1610 Winter 2026 14 / 32

Compiling + Linking = Building
So how to compile this code?

Before the full program can be compiled, all the source files (hydrogen.cpp,
output.cpp) must be compiled.

No main function in output.cpp, so it can’t become executable.

Instead output.cpp is compiled into an object file using the “-c” flag

It is advisable to separately compile all the code pieces into object files.

After all the object files are generated, they are linked together to create the
working executable.

$ module load gcc/14.2 rarray/2.8.2 # on the teach cluster
$ g++ -std=c++23 -march=native -Wall -O3 -c -o hydrogen.o hydrogen.cpp
$ g++ -std=c++23 -march=native -Wall -O3 -c -o output.o output.cpp
$ g++ -g -O3 -o hydrogen output.o hydrogen.o

If you leave out one of the needed .o files you will get a fatal
linking error: “undefined reference to . . . ”.

Ramses van Zon Modular Programming PHY1610 Winter 2026 15 / 32

Compiler options (a.k.a flags)
-std=c++23

Tells the compiler to adhere to this standard of
the C++ language. The default standard is likely
something close to C++17, so we need this flag.

-march=native

The optimal code also depends on the CPU you
want to compile for. Different CPUs support
different machine instruction sets.

By default, the compiler generates machine code
that conforms to rather low baseline, which will
run on older computers as well.

The -march=native tells the compiler to use all
instruction available on the computer.

-Wall

Lets the compiler give you warnings about
common mistakes, i.e., about pieces of the code
that look like they may not do what you want.

Always check and try to fix these warnings!

-O3

The translation from C++ to an object file is not
unique, but finding the most optimal machine
code takes time.

So, by default, many compilers do not try to find
this optimal code, but they will if you specify
-O1, -O2 or -O3.

Ramses van Zon Modular Programming PHY1610 Winter 2026 16 / 32

Interface v. Implementation

When hydrogen.cpp is being compiled, the header file output.h is included to tell the compiler that
“there exists out there somewhere functions of the following form”
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);

This allows the compiler to check the number and type of arguments and the return type for those
functions (the interface).

The compiler does not need to know the details of the implementation, since it’s not compiling the
implementation (the source code of the function).

The programmer of hydrogen.cpp also does not need to know the implementation, and is free to
assume that writeBinary and writeText have been programmed correctly.

This separation of interface and implementation is essential to modular programming.

Ramses van Zon Modular Programming PHY1610 Winter 2026 17 / 32

Guards against multiple inclusion

Protect your header files!

Header files can include other header files.

It can be hard to figure out which header files are already included in the program.

Including a header file twice will lead to doubly-defined entities, which results in a compiler error.

The solution is to add a ’preprocessor guard’ to every header file:
//output.h
#ifndef OUTPUT_H
#define OUTPUT_H
#include <rarray>
#include <string>
void writeBinary(const std::string& s, int n, const rarray<double,1>& x);
void writeText(const std::string& s, int n, const rarray<double,1>& x);
#endif

We expect to see these in your homework.

Ramses van Zon Modular Programming PHY1610 Winter 2026 18 / 32

What do you mean by “preprocessor”?

Before the compiler actually compiles the code, a “preprocessor” is run on the code.

For our purposes, the preprocessor is essentially just a text-substitution tool.

Every line that starts with “#” is interpreted by the preprocessor.

The most common directives a beginner encounters are #include, #ifndef, #define, and #endif.

C++20 modules

The C++20 standard defines a way to create modules that does not rely on the preprocessor.

Support of C++20 modules by compilers are still not complete. Where an implementations exist,
important details like how you compile and link, how you should name your modules files, and where the
result of a module compilation goes, all varies among compilers.

See: Colloquium on “C++20 Modules”, SciNet YouTube Channel

Ramses van Zon Modular Programming PHY1610 Winter 2026 19 / 32

https://www.youtube.com/watch?v=BbvwwBIRXeo&list=PLZRRlbOTxTmDB0_FGVNZSSCNS_wolP5uS

What goes into the interface (i.e. the header file)?

At the very least, the function declarations.

There may also be constants that the calling function and the routine need to agree on (error codes,
for example) or definitions of data structures, classes, etc.

Comments, which give a description of the module and its functions.

Further guidelines:

There should really only be one header file per module. In theory there can be multiple source files.

Not necessarily every function declaration is in the header file, just the public ones. Routines internal
to the module are not in the public header file.

Ramses van Zon Modular Programming PHY1610 Winter 2026 20 / 32

What goes into the implementation (source file)?

Everything which is defined in the .h file which requires code that is not in the .h file. Particularly,
function definitions.

Internal routines which are used by the routines declared in the .h file.

To ensure consistency, include the corresponding .h file at the top of the file.

Everything that needs to be compiled and linked to code that uses the .h file.

Ramses van Zon Modular Programming PHY1610 Winter 2026 21 / 32

Managing Compilation Complexity

Ramses van Zon Modular Programming PHY1610 Winter 2026 22 / 32

Make

make is a build program that is used to build programs from multiple .cpp, .h, .o, and other files.

It is actually a very general framework that is used to compile code of any type.

make takes a Makefile as its input, which specifies what to do, and how.

The Makefile uses variables, rules and dependencies to declare how to build the app or library.

The Makefile also specifies compiler commands, compiler flags, library locations, etc.

Build programs like this are a crucial component of professional software development.

https://www.gnu.org/software/make/manual/html_node/index.html

Ramses van Zon Modular Programming PHY1610 Winter 2026 23 / 32

https://www.gnu.org/software/make/manual/html_node/index.html

Basic usage

Make is invoked with a list of target files to build as command-line arguments:
$ make [TARGET ...]

Without arguments, make builds the first target that appears in its makefile, which is traditionally a
symbolic target named all.

Make uses the rules in the Makefile to decide which targets needs to be (re)generated based on file
modification times.

This solves the problem of avoiding the building of files which are already up to date, as long as the
timestamps are consistent and correct.

Ramses van Zon Modular Programming PHY1610 Winter 2026 24 / 32

Rules
A Makefile is a plain text file consisting of
rules.

Example
Makefile for the monolythic hydrogen code
hydrogen: hydrogen.cpp

g++ -std=c++23 hydrogen.cpp -o hydrogen

$ make
g++ -std=c++23 hydrogen.cpp -o hydrogen
$./hydrogen
Ground state energy=-0.379419

Each rule begins with a textual dependency
line which defines a target followed by a
colon (:) and optionally an enumeration of
prerequisites (files or other targets) on which
the target depends.

The dependency line is arranged so that the
target (left of the colon) depends on the
“prerequisites” (to its right) General format:

TARGET: prerequisites1 prerequisite2 ...
[command 1]
:
[command n]

Each command-line must start with a TAB
character to be recognized as a command.

Unfortunately, as you can’t easily see in your editor whether you have a TAB character or a set of spaces. If you
have spaces instead of a TAB, make will print the unhelpful error:

Makefile:3: *** missing separator. Stop.

Ramses van Zon Modular Programming PHY1610 Winter 2026 25 / 32

Makefile Example
Consider this set of commands:
$ g++ -std=c++23 -march=native -Wall -O3 -c -o hydrogen.o hydrogen.cpp
$ g++ -std=c++23 -march=native -Wall -O3 -c -o output.o output.cpp
$ g++ -O3 -o hydrogen output.o hydrogen.o

This can be encoded into this Makefile:
Makefile
hydrogen: output.o hydrogen.o

g++ -O3 -o hydrogen output.o hydrogen.o

output.o: output.cpp output.h
g++ -std=c++23 -march=native -Wall -O3 -c -o output.o output.cpp

hydrogen.o: hydrogen.cpp output.h
g++ -std=c++23 -march=native -Wall -O3 -c -o hydrogen.o hydrogen.cpp

which will build what is needed when running make.

Ramses van Zon Modular Programming PHY1610 Winter 2026 26 / 32

Rules - commands
Makefile
hydrogen: output.o hydrogen.o

g++ -O3 -o hydrogen output.o hydrogen.o

output.o: output.cpp output.h
g++ -std=c++23 -march=native -Wall -O3 -c -o output.o output.cpp

hydrogen.o: hydrogen.cpp output.h
g++ -std=c++23 -march=native -Wall -O3 -c -o hydrogen.o hydrogen.cpp

Each command is executed by a separate shell instance.

Comments are included using #

A rule may have no command lines defined.
The dependency line can consist solely of components that refer to targets.
This means either there is nothing to do, or there is a predefined rule.

The Makefile dependencies are declarative.
They define the build tree.
Their order does not matter.

Ramses van Zon Modular Programming PHY1610 Winter 2026 27 / 32

Macros & Variables
Macros are the variables or function of Makefile

Variables can hold simple string definitions, like CXX = g++.
The macro CXX is typically used in makefiles to refer to the location of the C++ compiler

Makefile
CXX=g++
hydrogen: output.o hydrogen.o

$(CXX) -O3 -o hydrogen output.o hydrogen.o

output.o: output.cpp output.h
$(CXX) -std=c++23 -march=native -Wall -O3 -c -o output.o output.cpp

hydrogen.o: hydrogen.cpp output.h
$(CXX) -std=c++23 -march=native -Wall -O3 -c -o hydrogen.o hydrogen.cpp

Macros in makefiles may be overridden by the command-line arguments passed to the Make utility
(e.g. “make CXX=clang++”).

To use macros, you need to use a dollar sign ($) followed by the name of the variable
in parentheses.

Environment variables are also available as macros.
Ramses van Zon Modular Programming PHY1610 Winter 2026 28 / 32

Extended Makefile Example
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++23 -march=native -O3 -Wall
LDFLAGS=-O3

all: hydrogen

hydrogen: hydrogen.o output.o initmatrix.o eigenvalue.o
$(CXX) $(LDFLAGS) -o hydrogen hydrogen.o output.o initmatrix.o eigenvalue.o

hydrogen.o: hydrogen.cpp output.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o hydrogen.o hydrogen.cpp

output.o: output.cpp output.h
$(CXX) -c $(CXXFLAGS) -o output.o output.cpp

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o initmatrix.o initmatrix.cpp

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o eigenvalue.o eigenvalue.cpp

clean:
$(RM) eigenvalue.o initmatrix.o output.o hydrogen.o

.PHONY: all clean

Ramses van Zon Modular Programming PHY1610 Winter 2026 29 / 32

Compilation and Linking

What happens when you type make?

make will only recompile those dependencies that have source files that are newer then the library,
thus only the code you are working on is modified.

If a target is not a file, you should declare it ‘PHONY’.
Otherwise, should a file by that name exist, make thinks it’s done already.

It’s good practice to put a clean rule in your Makefile that allows the whole compilation to restart.

Several rules could be processed at the same time; you can tell make to try and use multiple
processes when the dependencies allow it, but specifying a -j option, e.g.
$ make -j 4

Ramses van Zon Modular Programming PHY1610 Winter 2026 30 / 32

Special Variables

$@: the target filename

$*: the target filename without the file extension

$<: the first prerequisite filename

$ˆ: the filenames of all the prerequisites, separated by spaces, discard duplicates.

$+: similar to $ˆ, but includes duplicates

$?: the names of all prerequisites that are newer than the target, separated by spaces

Ramses van Zon Modular Programming PHY1610 Winter 2026 31 / 32

Extended Makefile Example with Variables
Example Makefile for the `hydrogen` program (after modularization)
CXX=g++
CXXFLAGS=-std=c++23 -O3 -Wall
LDFLAGS=-O3

all: hydrogen

hydrogen: hydrogen.o output.o initmatrix.o eigenvalue.o
$(CXX) $(LDFLAGS) -o $@ $ˆ

hydrogen.o: hydrogen.cpp output.h initmatrix.h eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

output.o: output.cpp output.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

initmatrix.o: initmatrix.cpp initmatix.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

eigenvalue.o: eigenvalue.cpp eigenvalue.h
$(CXX) -c $(CXXFLAGS) -o $@ $<

clean:
$(RM) eigenvalue.o initmatrix.o output.o hydrogen.o

.PHONY: all clean

Ramses van Zon Modular Programming PHY1610 Winter 2026 32 / 32

	Modular Programming
	Managing Compilation Complexity

