
Coding Best Practices
Quantitative Applications for Data Analysis

Alexey Fedoseev

February 3, 2026

Alexey Fedoseev Coding Best Practices February 3, 2026 1 / 22

Best practices

What are coding best practices?

These are coding practices which have been discovered, over the course of decades, to
produce code which is easy to write, read, debug, test, modify, share and use.

Best practices are a set of rules which affect how you
▶ design the code;
▶ implement the code.

Broadly speaking, coding best practices can be summed up thus:
▶ write code which is modular;
▶ don’t write code which has already been written, and
▶ write code which is easy to read and understand.

We’ve discussed a number of these points during previous lectures, but today we will discuss
them in detail.

Alexey Fedoseev Coding Best Practices February 3, 2026 2 / 22

Modularity

What do I mean when I say that I’m writing modular code? I’m writing code which:

is separated into individual functions and procedures and each of these performs a single,
specific task;

is separated into files, if the code is big enough, which contain related functionality;

is written so as to enforce boundaries between sections of code, and

includes testing routines, to test the functions against known correct answers.

Alexey Fedoseev Coding Best Practices February 3, 2026 3 / 22

Modularity

Why does modularity matter?

Scientific software can be large, complex and subtle;

If each section of code uses the internal details of other sections you must understand the
entire code at once to understand what the code in a particular section is doing;

This makes finding bugs (mistakes) extremely difficult, and

It also makes writing testing routines for your code extremely difficult.

Alexey Fedoseev Coding Best Practices February 3, 2026 4 / 22

Developing the code

Let us continue with the car project. So far we have the data directory and the file
car_search.R

user@scinet cars $ cat car_search.R
args <- commandArgs(trailingOnly = TRUE)
cat("The command line arguments are:", args, "\n")

Concatenates the vector using commas between the elements
vectorToString <- function(vector) {

return(paste(vector, collapse = ", "))
}

Alexey Fedoseev Coding Best Practices February 3, 2026 5 / 22

Developing the code
We would like to view the available models based on the specific car manufacturer.
car_search.R

Read the dataset
cars <- read.csv("./data/cars.csv")

Store the first argument in a separate variable
car.make <- args[1]

Select the entries with the specified car make
cars.make.data <- cars[cars$Make == car.make,]

View the first entries of the data frame
head(cars.make.data)

Alexey Fedoseev Coding Best Practices February 3, 2026 6 / 22

Developing the code

user@scinet cars $ Rscript car_search.R Lamborghini
The command line arguments are: Lamborghini

City.mpg Classification Driveline
440 12 Manual transmission Rear-wheel drive
450 12 Manual transmission Four-wheel drive
451 12 Manual transmission Four-wheel drive
5073 12 Manual transmission All-wheel drive
5074 12 Manual transmission All-wheel drive
...

This is a lot of output and could be confusing for someone who runs this script. Let us extract
the important information and present it in a tidy way.

Alexey Fedoseev Coding Best Practices February 3, 2026 7 / 22

Developing the code

Replace the output of the whole data frame with the following code.
Select the entries with the specified car make
cars.make.data <- cars[cars$Make == car.make,]

Display year and model only
cat("Available years:", vectorToString(cars.make.data[, "Model.Year"]),"\n")

user@scinet cars $ Rscript car_search.R Lamborghini
Available models: 2010 Lamborghini Gallardo Coupe,
2011 Lamborghini Gallardo Coupe, 2011 Lamborghini Gallardo Coupe,
2012 Lamborghini Gallardo Coup, 2012 Lamborghini Gallardo Spyder

Notice that I removed the output of the command line arguments.

Alexey Fedoseev Coding Best Practices February 3, 2026 8 / 22

Developing the code
Our program does not handle well the situation when no arguments were given.

user@scinet cars $ Rscript car_search.R
Available models: NA, NA, NA, NA ...

To fix this let us display a usage example.
args[1] must be a car make
args <- commandArgs(trailingOnly = TRUE)

if (length(args) == 0) {
cat("usage: Rscript car_search.R Lamborghini\n")
quit()

}

user@scinet cars $ Rscript car_search.R
usage: Rscript car_search.R Lamborghini

Alexey Fedoseev Coding Best Practices February 3, 2026 9 / 22

Improving the program

Let us add a feature to our program when user can view the information about models available
in a certain year.

user@scinet cars $ Rscript car_search.R Lamborghini
Available models: 2010 Lamborghini Gallardo Coupe,
2011 Lamborghini Gallardo Coupe, 2011 Lamborghini Gallardo Coupe,
2012 Lamborghini Gallardo Coup, 2012 Lamborghini Gallardo Spyder

user@scinet cars $ Rscript car_search.R Lamborghini 2011
Available models in 2011: 2011 Lamborghini Gallardo Coupe,
2011 Lamborghini Gallardo Coupe

We can use the second command line argument to specify the year of the model. In order to do
that we need to reorganize our code.

Alexey Fedoseev Coding Best Practices February 3, 2026 10 / 22

Restructuring the code
if (length(args) == 0) {

cat("usage: Rscript car_search.R Lamborghini\n")
quit()

}
if (length(args) == 1) {

Read the dataset
cars <- read.csv("./data/cars.csv")
Store the first argument in a separate variable
car.make <- args[1]
Select the entries with the specified car make
cars.make.data <- cars[cars$Make == car.make,]
Show all available models of the specified car make
cat("Available models:",vectorToString(cars.make.data[,"Model.Year"]),"\n")

} else if (length(args) == 2) {
cat("In progress...\n")

}
Alexey Fedoseev Coding Best Practices February 3, 2026 11 / 22

Adding a feature
...
} else if (length(args) == 2) {

cars <- read.csv("./data/cars.csv") # Read the dataset
Store the arguments in separate variables
car.make <- args[1]
car.year <- as.numeric(args[2])
Select the entries with the specified car make
cars.by.make <- (cars$Make == car.make)
Select the cars with the specified year of production
cars.by.year <- (cars$Year == car.year)
Select the entries that are of the specified make and year
cars.by.make.and.year <- cars[cars.by.make & cars.by.year,]
Display the models
cat("Available models:",

vectorToString(cars.by.make.and.year[, "Model.Year"]), "\n")
}

Alexey Fedoseev Coding Best Practices February 3, 2026 12 / 22

Modularity

Have you noticed how we had to restructure our code? While developing your code you are
going to do this many times. Using functions helps us to separate the logic in the code.

First of all we already have an improved version of the function vectorToString from the
lecture 6 on scripts and we can use it in our project.

Let us create a directory lib in our project and put the file vectorUtils.R that we have
developed.

user@scinet cars $ mkdir lib

Alexey Fedoseev Coding Best Practices February 3, 2026 13 / 22

Modularity
user@scinet cars $ cat lib/vectorUtils.R
vectorUtils.R

Concatenates the vector using commas between the elements
vectorToString <- function(vec, last.and = FALSE) {

if (last.and & length(vec) > 1) {
Concatenate all elements except the last one using commas
str.commas <- paste(vec[-length(vec)], collapse = ", ")
Concatenate the last element using "and"
str.and <- paste(str.commas, "and", vec[length(vec)])
return(str.and)

} else
Concatenate all elements using commas
return(paste(vec, collapse = ", "))

}

Alexey Fedoseev Coding Best Practices February 3, 2026 14 / 22

Modularity
To load the vectorUtils.R use the command source.
args <- commandArgs(trailingOnly = TRUE)
source("lib/vectorUtils.R")
...

We need to verify that after the modifications our program still works as intended.

user@scinet cars $ Rscript car_search.R
usage: Rscript car_search.R Lamborghini
user@scinet cars $ Rscript car_search.R Lamborghini
Available models: 2010 Lamborghini Gallardo Coupe,
2011 Lamborghini Gallardo Coupe, 2011 Lamborghini Gallardo Coupe,
2012 Lamborghini Gallardo Coup, 2012 Lamborghini Gallardo Spyder
user@scinet cars $ Rscript car_search.R Lamborghini 2011
Available models: 2011 Lamborghini Gallardo Coupe,
2011 Lamborghini Gallardo Coupe

Alexey Fedoseev Coding Best Practices February 3, 2026 15 / 22

Split the logic

Our program has logic:

Handle the specified arguments
▶ if no parameters were given - show the usage example
▶ if 1 parameter was given - treat it as a car make
▶ if 2 parameters were given - treat the first argument as a car make and the second one as a

model year

Load the dataset into a data frame

Slice the data frame according to the arguments provided

Display the resulting sliced data frame

We can split the logic between the functions.

Alexey Fedoseev Coding Best Practices February 3, 2026 16 / 22

Driver script
car_search.R

args[1] must be a car make
args[2] must be a year of a car model (if specified)
args <- commandArgs(trailingOnly = TRUE)

import function vectorToString
source("lib/vectorUtils.R")

import function checkArgs and parseArgs
source("lib/parseArgs.R")

import function displayModels
source("lib/displayCars.R")

Alexey Fedoseev Coding Best Practices February 3, 2026 17 / 22

Driver script (continued)
Stop the script if no arguments were specified
if (length(args) == 0) {

cat("usage: Rscript car_search.R Lamborghini\n")
quit()

}

Validate the command line arguments
args.filtered <- checkArgs(args)
Read the dataset
cars <- read.csv("./data/cars.csv")
Slice the data frame using the arguments
selected.cars <- parseArgs(args.filtered, cars)
View the resulting data frame
displayModels(selected.cars)

Alexey Fedoseev Coding Best Practices February 3, 2026 18 / 22

Utility files - parseArgs.R

parseArgs.R

checkArgs <- function(args) {
Discard arguments # 3,4,...
args.copy <- args[1:2]
Check whether the second argument is a number
as.numerics produces NA with the warning if it cannot convert the value
suppress the warning about NA
if (suppressWarnings(is.na(as.numeric(args.copy[2]))))

args.copy <- args[1] # Discard the second argument
return(args.copy)

}

Alexey Fedoseev Coding Best Practices February 3, 2026 19 / 22

Utility files - parseArgs.R (continued)
parseArgs <- function(args, cars) {

Store the first argument in a separate variable
car.make <- args[1]
Select the entries with the specified car make
cars.make.data <- cars[cars$Make == car.make,]
if (length(args) == 1) {

return(cars.make.data)
}
if (length(args) == 2) {

Convert the second argument to numeric value and store in a variable
car.year <- as.numeric(args[2])
Select the entries that are of the specified make and year
cars.by.make.and.year <- cars.make.data[cars.make.data$Year==car.year,]
return(cars.by.make.and.year)

}
}

Alexey Fedoseev Coding Best Practices February 3, 2026 20 / 22

Utility files - displayCars.R

displayCars.R

displayModels <- function(cars.data) {
If the data frame is empty
if (nrow(cars.data) == 0) {

Display the message and stop the script
cat("There are no car models available\n")
quit()

}

Display the models
cat("Available models:", vectorToString(cars.data[, "Model.Year"]),"\n")

}

Alexey Fedoseev Coding Best Practices February 3, 2026 21 / 22

Further improvements
Additional features

Partial search: “Lambor” should match “Lamborghini”
Case independent search: “ferrari” or “fERRAri” should match “Ferrari”
More user interactions: if data frame is empty, display an example of the arguments for a
non-empty output

Code improvements

Defensive programming - check that function arguments, or script command-line arguments
meet certain criteria, for example, handle the situation when the dataset does not exist.
More detailed comments

While you are modifying the part of your code, another part could stop working as expected. If
you do not notice it right away, it might lead to a chain of errors that is hard to trace to the
beginning. To prevent this behavior it is useful to create functions that will test the resulting
value of your functions.

Alexey Fedoseev Coding Best Practices February 3, 2026 22 / 22

	Best practices

