
Quantitative Applications for Data Analysis:
Linux command line I

Erik Spence

SciNet HPC Consortium

6 January 2026

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 1 / 29



Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Intro to Linux Shell I”.

https://education.scinet.utoronto.ca

You can also access the class web site directly, here:

https://scinet.courses/1399

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 2 / 29

https://education.scinet.utoronto.ca
https://scinet.courses/1399


Who are we?

We are Erik Spence and Alexey Fedoseev.

We are Applications Analysts at SciNet (https://www.scinethpc.ca).

SciNet is a High-Performance-Computing (HPC) consortium, one of six in Canada, run by
the University of Toronto.

These consortia run massively parallel computers, with tens of thousands of cores, to
perform computations that couldn’t be done otherwise.

Our job at SciNet is to help users get their code to run on these machines.

We also educate users on how to write fast, efficient code.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 3 / 29

https://www.scinethpc.ca


About this class

Some notes about this class:

This class aims to be a graduate course on data analysis and research computing, using R
and Python.

We will meet for 12 weeks, two lectures per week, on Tuesdays and Thursdays, 9:00am ∼
10:30am.

The lectures are scheduled to last 2 hours. This allows for classes running long, and for
answering questions after class, taking up assignments, etc.

Class is held in IA2100.

This class can be taken for graduate credit by UTSC graduate students (EES1137), as
well as graduate students at other campuses.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 4 / 29



About this class, continued

Some notes about this class:

There will be 10, approximately-weekly, homework assignments, usually assigned on
Thursdays, due one week later at midnight, and worth 100% of your final mark.

Late assignments will be accepted until one week after the deadline (at 9:00am), with a
penalty of 0.5 points per day (out of 10).

The assignments are submitted through the class web site.

Office hours will be held after class on Tuesdays, by email appointment. Let us know if
you need us to stay later after class.

Please, please ask for help if you need it!
▶ Post questions to the class forum.
▶ Talk to us, or email us if you have questions: courses@scinet.utoronto.ca.

Ask questions!

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 5 / 29

mailto:courses@scinet.utoronto.ca


SciNet certificates

In addition to official UofT class credit, SciNet also offers its own certificates.

We offer certificates in High Performance Computing, Scientific Computing and Data
Science.

Each certificate requires 36 SciNet credits; specific classes qualify for specific certificates.

This class qualifies for 28 credits toward the Data Science certificate, and 8 credits toward
the Scientific Computing certificate.

Visit the SciNet education website to see what other courses are available.

https://scinet.courses

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 6 / 29

https://scinet.courses


Class expectations
Some details about the class:

Prerequisites: minimal-to-no programming experience is sufficient. The goal is to start
slowly so all will be on the same page.

Software you will need:
▶ a Terminal program (needed immediately). On Windows, we recommend

⋆ ”git bash”, which contains both the terminal and ”git”, which will be needed later.
⋆ if you’re using the Windows Subsystem for Linux (WSL), the terminal will be built in.

▶ On a Mac you may use ”Terminal”.
▶ A text editor (needed Thursday): Sublime, VSCode.
▶ R, and various R libraries (needed by week 2).
▶ git, for version control (needed by week 4?).

Attendance is not mandatory, though encouraged. If you don’t attend, listen to the
recordings! The slides do NOT constitute all of the class material!

Note that the taking up of assignments will not be recorded.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 7 / 29



Class website

SciNet hosts its own web site for its classes.

https://scinet.courses, or https://education.scinet.utoronto.ca

We will not be using Quercus.

Log in with your SciNet account, or temporary account.

Click on ”Quantitative Applications for Data Analysis”.

Or go directly to the class web site: https://scinet.courses/1399

All assignments will be submitted through this website.

Let us know if you do not yet have an account.

All work for the class will go through this web site, so it is important that you have access.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 8 / 29

https://scinet.courses
https://education.scinet.utoronto.ca
https://scinet.courses/1399


Student Code of Conduct

Some details about doing the assignments:

You are welcome to discuss your assignments with each other.

You are not welcome to copy each other’s code.

You are not welcome to copy code you find on the internet, without giving credit.

https://governingcouncil.utoronto.ca/secretariat/policies/

code-behaviour-academic-matters-july-1-2019

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 9 / 29

https://governingcouncil.utoronto.ca/secretariat/policies/code-behaviour-academic-matters-july-1-2019
https://governingcouncil.utoronto.ca/secretariat/policies/code-behaviour-academic-matters-july-1-2019


Class topics

Our adventure in data analysis will cover the following:

Getting started with the Linux command line.

Getting started with R.

Vectors, arrays, data frames.

Version control, modular programming.

Statistics and machine learning.

Visualization.

Much of the above, using Python.

Other topics.

This list is subject to change. If there’s a particular topic that you’d like covered, let us know.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 10 / 29



Before we start

This class is intended to be fairly interactive. Eventually you will need R on your computers.
This week we will be using the Linux command line. Hopefully you’ve already got a terminal
program installed.

Windows users: we strongly recommend downloading ”git bash” or using the Windows
Subsystem for Linux (WSL).

https://git-scm.com/downloads

As mentioned, R will be needed, but not just yet. Please install it at your convenience.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 11 / 29

https://git-scm.com/downloads


Today’s class

Today we will visit the following topics:

Motivation for using the command line.

The file system from the command line.

Manipulating files from the command line.

The point of today’s class is to give you a first taste of the Linux command line. Please stop
me if you have a question.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 12 / 29



The Truth about interfaces

Why are we looking at the command line interface?

Nobody. Nobody. Nobody, uses a Graphical User Interface (GUI) for HPC
(High-Performance Computing). Nobody.

And this includes repetitive or large-scale data analysis, and the majority of programming
environments.

Who cares? Well, if you’re going to do repetitive data analysis it’s possible you might
need to use HPC to get it done.

Even if you don’t, knowing how to use this infrastructure will allow you to be significantly
more efficient, consistent and productive in the management and analysis of your data.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 13 / 29



GUIs versus the command line
Graphical User Interfaces (GUIs) have many strengths.

Very good at using existing functionality, existing controls.

Programs tend to have lots of functionality built into them, but can only do what they’ve
been programmed to do.

Can’t save a series of commands to replicate functionality.

Easy to learn. Hard to use for big tasks.

The Command Line Interface (CLI) has a different approach.

A blank canvas; you get to program what you want to do.

Good at creating new things.

Commands that do already exist are very good at doing one thing.

Commands that you create can be saved and re-used.

Hard to learn. Easy to use for big tasks.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 14 / 29



Why are we learning this?

I thought this was a data analysis class. Why are we learning this?

The goal of this class is to make you a more-productive researcher.

To that end we are going to teach you more than just statistics and how to program.
We’re going to teach you programming best practices.

It will be painful, because you will be learning new ways of doing things.

But we can promise you that you’ll be more productive if you adopt the practises that we
are going to teach you.

Running code from the command line, instead of through a GUI, is a necessary part of
improving your productivity.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 15 / 29



”The” shell
Open a Terminal:

Windows: start up ”git bash” (or ”MobaXterm”). Or start your WSL and open a terminal.

Mac: Applications/Utilities/Terminal (drag this to the dock).

Linux: xterm, eterm, ...

The terminal launches a shell. The shell is what you are actually interacting with when
you type commands.

The shell provides access to files, the network, and other programs.
▶ You type in commands.
▶ The shell interprets them.
▶ Performs actions on its own, or launches other programs.

The most commonly used shell in Linux is ’bash’.

There are others; mostly the same but some syntax is different.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 16 / 29



The command line prompt

Now that we’ve got a terminal open, what do we see? We see the command line prompt!

On ”git bash”, the prompt looks something like this:

ejspence@mycomp MINGW64 ~

Where ’ejspence’ is my username, and ’mycomp’ is the name of my computer. On a Mac my
prompt might look like this:

mycomp:~ ejspence$

On a Linux machine, my prompt might look like this:

[ejspence@mycomp ~]$

All of these are customizable, which we won’t be covering today. It doesn’t matter what it
looks like, so long as you’re comfortable with the prompt.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 17 / 29

~
~
~


Basics: home sweet home
Where am I?

Whenever you are using a shell you are located in some directory. You ”are somewhere”.
This is called the ”path”.

When you launch a shell, you start in your ”home directory”, this is the top directory of
all of your stuff.

The home directory is /c/Users/username for ”git bash”, /Users/username on Macs,
/home/username on Unix/Linux systems, /home/g/group/username on SciNet.

If a path starts with a ”/”, it is a ”full path”, otherwise it is a ”relative path” (meaning
the path relative to where you are currently located.

The home directory is universally represented by the ~ symbol.

Directories are sometimes called folders because of how they are represented in GUIs. We
will call them directories.

On Unix systems directories are listings of files, including other directories.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 18 / 29

~


A typical Linux directory tree
The top directory is ’/’; under that are home and
other directories, under home are the user home
directories, etc. You can always specify
a file or directory by its full ’path’:
/home/ejspence/work/README.

/

home etc

ejspence brelier

Desktop Downloads firstMPI.c work

code README

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 19 / 29



Basics: the file system
I will be assuming I am on a ”git bash” terminal, with a custom prompt. Your output will
likely differ somewhat if you are on a different system.

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] ls /c/Users

ejspence Public

Our commands
pwd present working directory
ls [dir] list the directory contents

arg mandatory argument
[arg] optional argument

’pwd’ stands for ’present working directory’. It will print the directory you are currently in.
As mentioned on the last slide, you begin in your home directory.

’ls’ stands for ’list’. If no argument is given it lists the contents of the current directory,
otherwise it lists the contents of the argument. Some implementations of ls
include colour.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 20 / 29



Creating directories

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] mkdir firstdir

[ejspence.mycomp] ls -F

Desktop LauncherFolder MyDocuments

firstdir/

[ejspence.mycomp] mkdir ~/2ndir
[ejspence.mycomp] ls -F

2ndir/ Desktop LauncherFolder MyDocuments

firstdir/

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory

arg mandatory argument
[arg] optional argument

’mkdir’ stands for ’make directory’. It creates a new directory, putting it in the current
directory unless a different path is specified.

’ls -F’ lists the directory, as before, but labels directories with a ’/’.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 21 / 29

~


Moving between directories
[ejspence.mycomp] ls

2ndir Desktop LauncherFolder MyDocuments firstdir

[ejspence.mycomp] mkdir firstdir/temp

[ejspence.mycomp] cd firstdir

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir

[ejspence.mycomp] ls

temp

[ejspence.mycomp] cd temp

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir/temp

[ejspence.mycomp] cd ..

[ejspence.mycomp] pwd

/c/Users/ejspence/firstdir

[ejspence.mycomp] cd ~
[ejspence.mycomp] pwd

/c/Users/ejspence

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory

arg mandatory argument
[arg] optional argument

’cd’ stands for ’change directory’. It
moves you to the directory you specify.
With no argument it moves you to the
home directory.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 22 / 29

~


Tips for getting around
Some common commands for moving around your directories:

The directory above is represented by the ’..’ symbol; the current directory is represented
by the ’.’ symbol:

▶ ’cd ..’ goes up a directory.
▶ ’cd ../..’ goes up two directories.
▶ ’cd ../otherdir’ goes up one directory and then down into ’otherdir’.
▶ ’cd firstdir/seconddir/../..’ goes nowhere.
▶ ’cd ./././.’ also goes nowhere.

You can use absolute paths: ’cd /c/Users/ejspence/firstdir/temp’.

~ is the symbol for your home directory, on whatever system you are using. ’cd ~/work’
goes to /c/Users/ejspence/work.

’cd’ without any arguments goes to your home directory (~), from no matter where you
are.

’cd -’ goes back to the directory you were in previously.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 23 / 29

~
~
~


Tips for using the command line

Some more helpful tips for using the command line:

Use the ’tab’ key, it will ’auto-complete’ the available options based on what you’ve
already typed,

▶ start typing your command, and then hit ’tab’
▶ the shell will fill in the rest, if there is only one option.
▶ if nothing happens, there is either no option or more than one option.
▶ hit the tab key twice, this will list all available options
▶ continue typing to reduce the number of options, then hit tab again to fill in the rest.

Use ’Ctrl-a’ to go to the beginning of the command line, ’Ctrl-e’ to go to the end of the
line.

Use the up arrow. This scrolls through the shell’s ’history’.

Do not put spaces in your files names, nor any other special characters.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 24 / 29



History
[ejspence.mycomp] history

.

.

15 [2014-06-05 11:23:47] cd firstdir

16 [2014-06-05 11:23:49] pwd

17 [2014-06-05 11:23:50] ls

18 [2014-06-05 11:23:53] cd temp

19 [2014-06-05 11:23:55] pwd

20 [2014-06-05 11:23:58] cd ..

21 [2014-06-05 11:23:59] pwd

22 [2014-06-05 11:24:03] cd

23 [2014-06-05 11:24:05] pwd

24 [2014-06-05 11:24:11] history

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history

arg mandatory argument
[arg] optional argument

The history command prints the commands that you’ve typed at the command line.
”history 10” prints the last 10 commands.

Use the up arrow to access the entries.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 25 / 29



Man pages

Know a command but aren’t sure how to use the options? Use the man (manual) page!

Most programs have a man page describing its use and all available options.

These pages are good for finding out more about a command you already use, but are less
good for learning new commands.

Many programs have gazillions of options.

No human being who has ever lived has know all the options for ’ls’.

Over time you will find a few that you find useful for your favourite commands.

Unfortunately, the ’man’ command doesn’t work with ”git bash”. Try adding the ”--help”
flag after a command to see the command-line options.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 26 / 29



Man pages: help!
Use the man (manual) page for a list of all flags for a command.

[ejspence.mycomp] man ls

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current di-

rectory by default). Sort entries alphabetically

if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory

for short options too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

...

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page

arg mandatory argument
[arg] optional argument

Not sure how to use the command? Not
sure what options there are? Check the
man page!

Type ’q’ to get out of the man page.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 27 / 29



Deleting directories
[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp] ls

2ndir Desktop LauncherFolder MyDocuments firstdir

[ejspence.mycomp] rmdir firstdir

rmdir: ’firstdir’: Directory not empty

[ejspence.mycomp] ls firstdir

temp

[ejspence.mycomp] cd firstdir

[ejspence.mycomp] rmdir temp

[ejspence.mycomp] ls

[ejspence.mycomp] cd ..

[ejspence.mycomp] rmdir firstdir

[ejspence.mycomp] ls

2ndir Desktop LauncherFolder MyDocuments

[ejspence.mycomp] rm 2ndir

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

’rmdir’ deletes a directory.

Uncharacteristically for Linux, rmdir
protects you. You can’t delete a
directory with files in it, you must delete
the files first.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 28 / 29



Our commands so far
There are a couple of things to observe about
the commands we’ve seen so far:

The commands are designed to be fast
and easy to use.

The commands do, essentially, only one
specific thing.

The commands are pretty cryptic. Either
you know them or you don’t.

Commands can take options. These are
usually indicated with a ’-something’ flag
(such as ’ls -F’).

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

As you may have hoped, the purpose of this class, and the next, is to teach you enough
commands that you will be able to survive the Unix command line.

Erik Spence (SciNet HPC Consortium) Linux Command Line I 6 January 2026 29 / 29


	The class
	Class details
	Class topics

	Interfaces
	The shell

	The File System
	The home directory
	Creating directories
	Tips for getting around
	History
	Man pages


