High-Performance Computing in R

Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 27, 2025

Scilet

Institute of Medical Science
&2 UNIVERSITY OF TORONTO

™

Alexey Fedoseev High-Performance Computing in R November 27, 2025 1/29

High-performance R

Just a reminder:

@ R is an interpreted language. As such, there is an extra layer of infrastructure (the
interpreter) needed to make R run

@ As a general rule, because of the extra layer of infrastructure, interpreted languages (R,
Python, Bash, Perl, ...) are not high-performance languages

@ True high-performance languages are compiled, and thus they lack the extra layer of
infrastructure: C, C++, Fortran

@ That being said, there are ways of making R better. That is the goal of this class

Alexey Fedoseev High-Performance Computing in R November 27, 2025 2/29

R and memory

One must be cognisant of how R manages memory:

@ R is "pass-by-value” if the variables being passed are being modified within the function.
As such, R frequently needs to make temporary copies of variables, and hitting the memory
limit of your machine can be a frequent problem

@ Like many dynamic languages, R relies on “garbage collection” to limit its memory usage

@ In a running program, “every so often” a garbage collection task runs and deletes variables
that won't be used any more

@ You can force the garbage collector to run at any given time by calling gc (), but this
almost never fixes anything significant

@ How can GC know that you're not going to use that big variable in the next line? The
garbage collector needs your help to be effective

Alexey Fedoseev High-Performance Computing in R November 27, 2025 3/29

Useful memory-management commands
@ gc(verbose = TRUE), or just gc (TRUE)

» Calling gc (TRUE) alone probably won't help anything, but it does give verbose output,
returning memory usage as a matrix

e 1s()
» Lists all existing variables, as strings
@ object.size(variablename)
» Pass it a variable, and it prints out its size
» Pass it get(“variablename”) and it will also print its size
o rm(variablename)
» Deletes a variable you no longer need. Lets gc go to work
@ Fun little one-liner which prints out all variables by size in bytes

> sort(sapply(1s(), function(x) {object.size(get(x))}), decreasing = TRUE)
November 27, 2025 4/29

object.size and gc

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 183250 9.8 407500 21.8 350000 18.7
Vcells 377223 2.9 905753 7.0 864975 6.6

> get.mem <- function() return(gcO[, 1:2])
> old.mem <- get.mem()

> x <= rep(0., (16 * 1024)*%*2)

> xsize <- object.size(x)

> xsize
2147483688 bytes
> print(xsize, units = "MB")
2048 Mb
> get.mem() - old.mem

used (Mb)
Ncells 445 0

Vcells 268436139 2048
Neislys: 5 ZUE S

object.size and gc, some more

Now let's delete the object and see how the system memory behaves

> rm(x)

> final.mem <- get.mem()

> final.mem - old.mem
used (Mb)

Ncells 451 0.1

Vcells 1781 0.0

Be sure to delete temporary variables in your scripts, especially large ones!

Alexey Fedoseev High-Performance Computing in R November 27, 2025 6/29

Profiling

To push your code to new heights of awesome, or to make it useful at all (depending on your
situation), you will need to profile your code. What is profiling?

@ Profiling is analyzing where the code is spending its time. Which parts of the code are
slowest?

@ Testing how long individual functions take can be performed with the ‘microbenchmark’
package, or more crudely, system. time

@ To test the whole program we use the Rprof function

We'll do some examples of each.

Alexey Fedoseev High-Performance Computing in R November 27, 2025 7/29

Profiling individual functions

@ The system.time command uses the OS’s time command to determine how long the
code takes to run.

> f <- function() {

+ a <-1

+ for (i in 1:1e8) {
+ a<-a+i

+ }

+ }

> system.time(£())

user system elapsed
0.964 0.002 0.967

Alexey Fedoseev High-Performance Computing in R November 27, 2025 8/29

Profiling individual functions - microbenchmark

@ The microbenchmark function is more systematic. It takes an average over 100 calls of
the function. Consequently, it can take a while to run

@ Note that the microbenchmark package will need to be downloaded

> microbenchmark(f(), times=10)

Unit: milliseconds
expr min 1q mean median uq max neval
£() 927.771 929.782 939.4129 940.1643 943.3133 952.1787 10

Alexey Fedoseev High-Performance Computing in R November 27, 2025 9/29

Profiling individual functions - microbenchmark

@ You can use microbenchmark to compare performance of multiple functions:
x = runif (100)
microbenchmark (

sqrt(x),

x ~ 0.5
)

Unit: nanoseconds

expr min 1q mean median uq max neval
sqrt(x) 287 328 604.34 369 430.5 10742 100
x70.5 1968 2009 2106.17 2050 2091.0 5248 100

Alexey Fedoseev High-Performance Computing in R November 27, 2025 10/29

Profiling whole programs
Use Rprof to analyse where the code is spending its time.

> addme <- function(a, b) { Sys.sleep(0.001); return(a + b) }
> test <- function() {
+ a<-1
+ for (i in 1:1e5)
+ a <- addme(a, i)
+ }
> Rprof ("Rprof.data")
> test()
> Rprof (NULL)
> s <- summaryRprof ("Rprof.data")
> s$by.total
total.time total.pct self.time self.pct
"test" 1.82 100.0 0.00 0.0
"Sys.sleep" 1.80 98.9 1.80 98.9
"addme" 1.80 98.9 0.00 0.0

Alexey Fedoseev High-Performance Computing in R November 27, 2025 11/29

Rprof
Some notes about the last slide:

@ Rprof samples the program every 20ms, by default, to see where the program is spending
its time

@ Use Rprof ("filename") to store the Rprof results in a particular file
@ Use Rprof (NULL) to turn off profiling

@ You can read “filename” if you want. It's easier to just use summaryRprof ("filename")
to analyse the results

@ Results are given in data frames

@ Columns total.time and total.pct (total percent) include all time spent within a
function, including calls to other functions

e self.time and self.pct indicate actual time spent in each function (self.pct should
add up to 100%, give or take rounding).

Alexey Fedoseev High-Performance Computing in R November 27, 2025 12 /29

Existing parallelism

It's important to realize that many fundamental routines as well as higher-level packages come
with some degree of scalability and parallelism “baked in".

Open another terminal to your node, and run “top” while executing the following in R:

n <-4 x 1024

A <- matrix(rnorm(n * n), ncol = n, nrow

B B
~—

B <- matrix(rnorm(n * n), ncol = n, nrow

C <- A 7%} B

VIV V VIV V|V

Alexey Fedoseev High-Performance Computing in R November 27, 2025 13/29

Existing parallelism

htop a1

oLl [RNA [RNA [RRE] 4[| [RNA [RNA] [RNA]
IO SCHTLTTET T
20 HHLHTTTT T 6 I
3L : I

Ciinl [RARRRERRARNEY 410, 1398 thr; 8
Swpl : 4.003.47 2.4
: 72 days, 08:08:37

PID USER PRI NI VIRT RES S CPU% MEM% TIME+ Commandv
11388 alexey 26 @ 394G 4661M ? 778. 28.5 0:17.50 R --vanilla

@help [@iSetup [EiSearchiiFilterfgTree [f8sortBy{ggNice -[giNice +fekill [@liouit |

One R process using 778% of a processor.

R can (and should) be built using high-performance threaded libraries for math in general, and
linear algebra in particular.

Here the single R process has launched several threads of execution — all of which are part of the
same process, and so can see the same memory.

Alexey Fedoseev November 27, 2025 14 /29

mclapply

One simple way to parallelize your code is to use mclapply, which works the same way as
lapply, but forking off the processes (forking does not work on Windows):

> library(parallel)

> add.me <- function(n) {

+ a<-1

+ for (i in 1:n) a <- 1/ (1 + a)

+ }

> system.time(list.res <- lapply(rep(le8,4), add.me))

user system elapsed
5.532 0.007 5.539
> system.time(list.par.res <- mclapply(rep(1e8,4), add.me, mc.cores = 4))
user system elapsed
4.495 0.013 1.516

Alexey Fedoseev High-Performance Computing in R November 27, 2025 15/29

mclapply

Note what the output of top looks like when this is running:

® htop X1

40 (RRRRARRN ITTETrrrriie
SC (RRRRRRRN (RNRRARRRRE
6[(RRRRARRY (RRRRRRRN
7C (RRRRARRY (RNRRARRN
Mem[| [RRRRRRAN 1117.67G, Tasks: 477, 1399 thr; 5 running
Swp[Load average: 3.70 1.95 1.67
Uptime: 73 days, 04:45:14

PID USER PRI NI VIRT RES S CPU%VMEM% TIME+ Command
14449 alexey 24 0 5198M 6816 ? 100. 0.0 0:01.29 R anilla
14447 alexey . . . R --vanilla
14450 alexey i
14448 alexey .

14439 alexey G 59216 ? 0.0 0.4 0:00.27 R --vanilla

@Help [iSetup [gsearchiFiltergiree [fESortByjgNice JgiNice ki1l [gluit |

There are multiple processes running - not one process using multiple CPUs via threads.

Alexey Fedoseev November 27, 2025 16 /29

foreach - serial

The standard R for loop looks like this:
> for (i in 1:2) print(sqrt(i))
[1] 1

[1] 1.414214

The foreach operator looks similar (you may need to install the foreach package), but returns
a list of the iterations:
> library(foreach)

> foreach (i=1:2) %do} sqrt(i)
[[1]]
[1] 1

(211
[1] 1.414214

Alexey Fedoseev High-Performance Computing in R November 27, 2025 17/29

foreach + doParallel

Foreach works with a variety of backends to distribute computation.

Switching the above loop to parallel just requires registering a backend and using %dopar?
rather than %do¥%:

> library(doParallel) # make sure doParallel package is installed
> registerDoParallel(3) # use forking, does not work on Windows

> foreach (i=1:2) Ydopar’ sqrt(i)

[[11]

[1] 1

[[21]
[1] 1.414214

> stopImplicitCluster()

Alexey Fedoseev High-Performance Computing in R

November 27, 2025 18/29

foreach + doParallel

One can also use a PSOCK cluster:

> cl <- makePSOCKcluster(3) # works on Windows

> registerDoParallel(cl) # use the just-made PSOCK cluster
> foreach (i=1:3) Ydopar) sqrt(i)

(0111

(1] 1

(211
[1] 1.414214

[r311
[1] 1.732051

> stopCluster(cl)

Alexey Fedoseev High-Performance Computing in R

Combining results

While returning a list is the default, foreach has a number of ways to combine the individual
results:

> foreach (i=1:3, .combine=c) %do’, sqrt(i)
[1] 1.000000 1.414214 1.732051
> foreach (i=1:3, .combine=cbind) Jdo sqrt(i)
result.l result.2 result.3
[1,] 1 1.414214 1.732051
> foreach (i=1:3, .combine="+") %do’ sqrt(i)
[1] 4.146264
> foreach (i=1:3, .multicombine=TRUE, .combine="sum") 7do’% sqrt(i)
[1] 4.146264

Most of these are self-explanatory. multicombine is worth mentioning: by default, foreach
will combine each new item individually. If .multicombine=TRUE, then you are saying that
you're passing a function which will do the right thing even if foreach gives it a whole chunk of
new results as a list or vector - e.g., a whole chunk at a time.

November 27, 2025 20/29

Running across multiple computers

You can run your code on multiple computers by specifying them to the function
makePSOCKcluster:

> library(foreach)

> library(doParallel)

> hosts <- rep(c("tri-loginO1", "tri-loginO2"), 2)

> cl <- makePSOCKcluster(names=hosts, outfile="")

starting worker pid=4163978 on tri-login01:11494 at 19:24:39.138

> registerDoParallel(cl)
> foreach (i=seq_along(hosts), .combine=data.frame) Jdopary
+ c(Sys.info() ["nodename"], "Process ID"=Sys.getpid(), calc=i**2)

result.1 result.?2 result.3 result.4
nodename tri-loginOl tri-login02 tri-loginOl tri-login02
Process ID 4165542 3136113 4165641 3136230
calc 1 4 9 16

> stopCluster(cl)
Alexey Fedoseev High-Performance Computing in R November 27, 2025 21/29

Parallel RNG

Depending on what you are doing, it may be very important to have different (or the same!)
random numbers generated in each process.

parallel has a good RNG suitable for parallel work based on the work of Pierre L'Ecuyer in
Montréal:

> RNGkind ("L'Ecuyer-CMRG")

> mclapply(rep(1,2), rnorm, mc.cores=2, mc.set.seed=TRUE)

[C111]
[1] -0.4982475

[[21]
[1] 0.9267458

Alexey Fedoseev High-Performance Computing in R November 27, 2025 22/29

Compiled code

It is possible to interface your R code with compiled code. Why would you want to do that?

It's fast! Compiled code is always faster than interpreted code

If you can get the slowest parts of your code into a compiled language, you can leave the
rest in R

@ R comes with the ability to byte-compile specific functions

It's also possible to write your own pure C4++ or Fortran code to interface with R, but it's
a pain

@ It's easier to use the Rcpp package, written by Dirk Eddelbuettel, Romain Francois, and
others

This package allows you to easily interface with C++ code

Alexey Fedoseev High-Performance Computing in R November 27, 2025 23/29

Byte-compiled R code

We can byte-compile specific R functions using the compiler package. Since R 3.4.0, loops are
automatically byte-compiled before they are run, and all functions are compiled on their first or
second use.

Here we're using the enableJIT (Just In Time compiler) function to turn off automatic byte
compiling. In general, you should NOT do this. We're only doing this for the purposes of
comparing speeds.

> library(compiler); library(microbenchmark)

> 01dJIT <- enableJIT(0); n <- 1leb

> f <- function(n) { x <- 1; for (i in 1:n) x <- 1 / (1 + x) }

> 1f <- cmpfun(f)

> microbenchmark(f(n), 1f(n))

Unit: milliseconds
expr min 1q mean median uq max neval
f(n) 13.439841 13.778255 14.309054 13.860767 14.38052 27.337693 100
1f(n) 1.359232 1.362942 1.372936 1.364152 1.37596 1.526307 100

Alexey Fedoseev High-Performance Computing in R November 27, 2025 24/29

Byte-compiled R code

Some notes about the last slide:

@ Byte compiling is not the same as actually compiling code, as is done with compiled
languages:

» Byte compiling creates a byte object, which is executed by a virtual machine

» Compiled languages are compiled into machine code, which is directly used by the hardware

@ Nonetheless, byte compiling can be significantly faster than running the code through the R
interpreter

@ If you run a function multiple times, R will automatically byte-compile it for you. Better to
just byte-compile it in your utilities file.

@ Automatic byte compiling can be turned off using the enableJIT function, though this is
not recommended

Alexey Fedoseev High-Performance Computing in R November 27, 2025 25/29

Installing Rcpp

We're going to be doing examples with Rcpp. But, if you're using Windows. ..
@ Rcpp is not a default R package; you will need to download and install it
@ Because Rcpp compiles code (that's the point), you will need a compiler on your computer
@ If you're using Linux or a Mac, you're probably OK
@ On Windows, you need to go here, and download “Rtools":
https://cran.r-project.org/bin /windows/Rtools

Note that Rtools is quite large, and will require some time to download. It's probably best not
to do this during class.

Alexey Fedoseev High-Performance Computing in R November 27, 2025 26 /29

https://cran.r-project.org/bin/windows/Rtools

Using Rcpp

Once the function is defined, it will automatically be compiled, this is why it takes a moment for
the cppFunction command to finish.

Once compiled, Rcpp creates an R function which links to the compiled C++ code.
> library(Rcpp)

> cppFunction("int times(int x, int y) {

+ int product = x * y;

+ return product;

+ }")

> times (34, 4)

[1] 136

> 34 % 4

[1] 136

Alexey Fedoseev High-Performance Computing in R November 27, 2025 27/29

Using Rcpp

Some notes about this example:

@ Rcpp defines special C++ data types which are compatible with R data types:
> IntegerVector, NumericVector, LogicalVector, CharacterVector
» IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix
» Lists, DataFrames
@ These data types allow the ability to deal with missing values, using the is_na() function

Note that you should always test your code carefully when using multiple languages. Sometimes
surprises can creep in.

Alexey Fedoseev High-Performance Computing in R November 27, 2025 28/29

Making your code awesome

Some tips:

@ Save your function profiling until you know that the function works correctly. Don't
succumb to “premature optimization”

@ Do byte compiling first. It's easy and may be good enough
@ Put your byte-compiled functions in your utilities files

@ Don't be afraid of Rcpp. Once you know how to program in one language, you're at least
80% of the way to programming in all languages

@ Ask us for help, if speed becomes an issue for your productivity

Alexey Fedoseev High-Performance Computing in R November 27, 2025 29/29

	High-performance R
	Parallel R

