
Introduction to Computational BioStatistics with R:
neural networks

Erik Spence

SciNet HPC Consortium

20 November 2025

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 1 / 28

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
under Lectures, ”Neural networks”.

https://scinet.courses/1391

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 2 / 28

https://scinet.courses/1391

Neural networks are commonplace

Neural networks are particularly good at detecting patterns, and for certain problems perform
better than any other known class of algorithm. Neural networks are used for

Image recognition, object detection (pneumonia, cancer).

Medical diagnosis.

Natural language processing (voice recognition).

Novelty detection (detection of outliers).

Next-word predictions.

Text sentiment analysis.

System control (self-driving cars).

Neural networks are finding their way into everything.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 3 / 28

Neural networks, motivation

Consider the problem of hand-written digit recognition:

How would you go about writing a program which can tell you what digits are displayed?

All the algorithms you might use to describe what a given number ”looks like” are
extremely difficult to implement in code. Where do you even start?

And yet humans can easily tell what these digits are.

Neural networks are based on a ”biologically inspired” approach to solving such
classification problems.

This is one of the classic problems which have been solved using neural networks.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 4 / 28

Neural networks, the approach

Rather than focus on the details of what individual numbers look like, we will instead ignore
those details altogether. We will use a completely different approach:

Break the data set of numbers into two or three groups: training, testing, and optionally
validation.

As with other supervised machine-learning algorithms, feed the training data to the neural
network and train it to recognize one number from another.

Rather than focus on details of the numbers, let the neural network figure out the details
for itself.

This is the goal of this class.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 5 / 28

Neurons

Neural networks are built upon ”neurons”. This is just a fancy way of saying a ”function that
takes multiple inputs and returns a single output”.

neuron

x1

x2

x3

y

The function which the neuron implements is up to the programmer, but it must contain free
parameters so that the network can be trained. These functions usually take the form

f(x1, x2, x3) = f

(
3∑

i=1

wixi + b

)
= f (w · x + b)

Where w are the ’weights’ and b is the ’bias’. These are the trainable parameters.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 6 / 28

Neurons, continued

What function should we use for f? One which is usually used, at least when initially teaching
about neural networks, is the ”sigmoid function” (also called the ”logistic function”).

σ(z) =
1

1 + e−z

And so our neuron function becomes

f(x1, x2, x3) = f (w · x + b) =
1

1 + e−(w·x+b)

Where again w are the ’weights’ and b is the ’bias’.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 7 / 28

Why the sigmoid function?

8 6 4 2 0 2 4 6 8

z

0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

Because it ranges from 0 to 1 smoothly.
Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 8 / 28

Neural networks
Suppose we combine many neurons together, into a proper network, consisting of ”layers”.

output

output

output

inputs

hidden layersinput layer output layer

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 9 / 28

Some notes about neural networks

Some details about the graphic on the previous slide:

The input neurons do not contain any functions. They merely represent the input data
being fed into the network.

Each neuron in the ’hidden’ layers and the output layer all contain functions with their
own free parameters, w and b.

Each neuron outputs a single value. This output is passed to all of the neurons in the
subsequent layer. This type of layer is known as a ”fully-connected”, or ”dense”, layer.

The number of free parameters in the neurons in any given layer depends upon the
number of neurons in the previous layer.

The output from the output layer is aggregated into the desired form to calculate the cost
function.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 10 / 28

Seriously?

You might legitimately wonder why on Earth we would think this would lead anywhere.

As it happens, this topology is similar to some simple biological neural networks.

Each layer takes the output of the previous layer as its input.

Each layer makes ”decisions” about the information that it receives.

In this way the later layers are able to make more complex and abstract decisions than the
earlier layers.

A many-layered network can potentially make sophisticated decisions.

However, there are subtleties in training such a network.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 11 / 28

Training our neural network

How do we optimize the weights and biases? We need to define some sort of ”cost function”
(sometimes called ”loss” or ”objective” function):

C =
1

2

∑
i

(g(xi) − yi)
2

where g is our neural network, and yi are the correct answers associated with each xi. Here
we are using the ”quadratic” cost function.

We then use an optimization algorithm to search for the values of w and b which generate the
minimum of C, given the data x and y. In our example we will use the Gradient Descent
algorithm to find this minimum.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 12 / 28

Gradient descent, continued
Suppose the function we want to minimize has
only one parameter.

C = w2

Supposed we’ve guessed that the minimum of C
is wi, and we wish to improve the guess.
Gradient descent says to move according to the
formula:

wi+1 = wi − η
∂C

∂wi

where η is called the step size. We then repeat
until some stopping criterion is satisfied.

If we have multiple parameters, we step them all.

4 2 0 2 4
w

0

5

10

15

20

25

C

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 13 / 28

Training a neural network

How do we apply Gradient Descent to a neural network?

Suppose that we decide to try to use gradient descent to train the network from five
slides ago (slide 9).

Each of the neurons has its own set of free parameters, w and b. There are lots of free
parameters!

To update the parameters we need to calculate every ∂C
∂wi

and ∂C
∂b

for every neuron!

But how do we calculate those derivatives, especially for the parameters associated with
the neurons that are several layers away from the output?

Actually, as it happens, this is a solved problem. The algorithm is call Backpropagation, but
we won’t cover it today.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 14 / 28

Handwritten digits

One of the classic data sets on which to test neural-network techniques is the MNIST data set.

A database of handwritten digits, compiled by NIST.

Contains 60000 training, and 10000 test examples.

The training digits were written by 250 different people; the test data by 250 different
people.

The digits have been size-normalized and centred.

Each image is grey scale, 28 x 28 pixels.

We can create a neural network to classify these digits.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 15 / 28

Our network

How would we design a network to analyze this data?

Each image is 28 x 28 = 784 pixels. Let the input layer consist of 784 input nodes. Each
node will consist of the grey value for that pixel.

The output will consist of a one-hot-encoding of the networks analysis of the input data.
This means that, if the input image depicts a ’7’, the output vector should be
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0].

Thus, let there be 10 output nodes, one for each possible digit.

To start, let’s just use a single hidden layer.

Fortunately, packages exist which make coding such a network quite easy.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 16 / 28

Our neural network

output

output

inputs

hidden layer
(arbitrary)

input layer
(784 nodes)

output layer
(10 nodes)

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 17 / 28

Neural network frameworks

Now that we have a plan for our network, how are we going to code it? The standard way is
to use a neural network ’framework’. Why would you do that?

Coding your own networks from scratch can be a bit of work.

Neural network (NN) frameworks have been specifically designed to solve NN problems.

R, of course, is not a high-performance language.

The NN frameworks which have been developed are compiled before being used, thus
being much faster than interpreted R.

The NN frameworks are also designed to use GPUs, which make things significantly faster
than just using CPUs.

Standard NN frameworks include TensorFlow, Torch, and Jax.

We will use Keras, on a TensorFlow backend.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 18 / 28

Keras

We will use Keras on top of TensorFlow.

Keras is a neural network (NN) framework.

Runs on top of a ’back end’, which by default is now TensorFlow.

It was built into TensorFlow, but has now been split off (again).

Because it’s a proper framework, all of the NN goodies you need are already built into it.

Designed for fast development of networks.

Has an R interface available for it.

Keras in R used to be a pain to install, but it seems to have gotten better. It will likely install
parts of Tensorflow with it.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 19 / 28

Getting the data

Let us implement our neural network using
Keras. First let us get the MNIST data.

Installing Keras takes some time. It has
large dependencies.

The data can be automatically
downloaded by Keras. But when it does
so it will likely also install TensorFlow
onto your machine.

The data comes pre-split into training
and testing data sets.

>

> library(keras3)

>

> mnist <- dataset mnist()

>

> x.train <- mnist$train$x

> y.train <- mnist$train$y

> x.test <- mnist$test$x

> y.test <- mnist$test$y
>

> str(x.train)

int [1:60000, 1:28, 1:28] 0 0 0 0 0 0 ...

>

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 20 / 28

Getting the data, continued

We now need to pre-process the data into
the form we want.

We use the ”array reshape” command
to change the data to 1-D.

We use this, rather than ”dim(x.train)
<- c(..)” to maintain the row-major
nature of the data (R is column-major).

We need to one-hot encode the target
data. We use the ”to categorical”
function to do this.

>

> x.train <- array reshape(x.train,

+ c(nrow(x.train), 784))

> x.test <- array reshape(x.test,

+ c(nrow(x.test), 784))

>

> str(y.train)

int [1:60000(1d)] 5 0 4 1 9 2 1 3 4 ...

>

> y.train <- to categorical(y.train, 10)

> y.test <- to categorical(y.test, 10)

>

> str(y.train)

int [1:60000, 1:10] 0 1 0 0 0 0 0 0 0 ...

>

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 21 / 28

Our network using Keras

We implement our model using Keras,
with 30 neurons in the hidden layer.

The “input” layer is the represents
the incoming data.

A ”Dense” (”fully-connected”)
layer is the layer we’ve already
discussed.

The ”activation” is the output
function of the neuron.

The model is built by indicating the
input and output of the network.

> my.input <- layer input(shape = c(784))

> my.dense <-layer dense(units = 30,

+ activation = ’sigmoid’)(my.input)

> my.output <- layer dense(units = 10,

+ activation = ’sigmoid’)(my.dense)

> model <- keras model(input = my.input,

+ output = my.output)

> summary(model)

Layer (type) Output Shape Param #

input layer 1 (InputLayer) (None, 784) 0

dense 1 (Dense) (None, 30) 23,550

dense 2 (Dense) (None, 10) 310

Total params: 23,860

Trainable params: 23,860

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 22 / 28

Our network using Keras, continued

Now that the network is constructed, it must be compiled.

The loss (cost) function must be specified.

The optimizer indicates what minimization algorithm to use. Here we use Stochastic
Gradient Descent (SGD), which is a variation on regular Gradient Descent.

The ’metrics’ flag indicates what to print out during the training of the network.

The ’fit’ command is used to execute the training.

The number of epochs, and the batch size, are parameters which apply to the
optimization algorithm.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 23 / 28

Our network using Keras, continued more

>

> model %>% compile(loss = ’mean squared error’, optimizer = optimizer sgd(),

+ metrics = c(’accuracy’))

>

> fit <- model %>% fit(x.train, y.train, epochs = 200, batch size = 128)

Epoch 1/200

469/469 [==============================] - 0s 421us/step - acc: 0.1933 - loss: 0.1368

Epoch 2/200

469/469 [==============================] - 0s 400us/step - acc: 0.3126 - loss: 0.0923

.

.

.

Epoch 199/200

469/469 [==============================] - 0s 368us/step - acc: 0.8947 - loss: 0.0225

Epoch 200/200

469/469 [==============================] - 0s 347us/step - acc: 0.8947 - loss: 0.0225

>

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 24 / 28

Our network using Keras, continued even more

Now check against the test data.
88.6%!

This isn’t great. We can do
better, but the techniques to do
so are beyond the scope of
today’s class.

>

> pred <- model %>% evaluate(x.test, y.test)

5 7616/10000 [=============>........] - ETA: 0s

>

> pred[[’accuracy’]]

[1] 0.8859

>

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 25 / 28

The next steps

We can do better. What might we do? There are a few simple approaches that might be
explored.

Change the activation function.

Change the cost function.

Change the optimization algorithm.

Change the way things are initialized.

Add regularization, to try to deal with over-fitting.

The most important technique, however:

Completely overhaul the network strategy.

This field is huge; we’ve barely scratched the surface.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 26 / 28

Deep Learning

You’ve probably heard the term. What is Deep Learning?

Quite simply: a neural network with many hidden layers.

Up until the mid-2000s neural network research was dominated by ”shallow” networks,
networks with only 1 or 2 hidden layers.

The breakthrough came in discovering that it was practical to train networks with a larger
number of hidden layers.

But it only became practical with the advent of sufficient computing power (GPUs) and
easily-accessible huge data sets.

State-of-the-art networks today can contain dozens of layers.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 27 / 28

Linky goodness

Neural network classes:

http://neuralnetworksanddeeplearning.com

http://cs231n.stanford.edu

I am offering a SciNet neural network programming class starting in mid-April. The class is
taught in Python.

Erik Spence (SciNet HPC Consortium) Introduction to neural networks 20 November 2025 28 / 28

http://neuralnetworksanddeeplearning.com
http://cs231n.stanford.edu

	Motivation for neural networks
	Why neural networks?
	Neurons
	The sigmoid function
	Neural networks
	Gradient descent

	Neural Network example
	Handwritten digits
	Our network
	Keras
	The data
	The network

