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Today’s slides

Today’s slides can be found here. Go to the ”Introduction to Computational BioStatistics with
R” page, under Lectures, ”Unsupervised learning”.

https://scinet.courses/1391
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Today’s class

Today we’re going to explore some unsupervised learning algorithms:

Factor Analysis,

Principle Component Analysis,

Clustering algorithms.

Ask questions!
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Supervised and unsupervised learning

When we’re working with data, we generally have two classes of machine learning analyses:

Supervised learning: the data comes labelled with the correct answer:
▶ Each data point consists of a set of ’features’, x = (x1, x2, ..., xp), and a corresponding

’target’ (or ’label’), y.
▶ Examples include curve fitting, classification algorithms.

Unsupervised learning: we’re looking for patterns in the data:
▶ Each data point consists of a set of ’features’, x = (x1, x2, ..., xp), but there is no target,

y. Or if there is, we ignore it.
▶ We typically are interested in which groups of items in this dataset are similar? Dissimilar?
▶ Generally used for exploration, evaluation and sometimes prediction.
▶ Examples include clustering algorithms, PCA, LDA.

There are also semi-supervised, and self-supervised learning, but we won’t be dealing with
those today.
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Curse of dimensionality

The ”curse of dimensionality” is a generic term which refers to the difficulty in properly fitting
or modelling data in high-dimensional spaces.

Each feature in your data set is another dimension.

Each dimension gives more space for your solution to live in.

The more space there is, the harder it can be to find the solution, or build a meaningful
model.

”Dimensionality reduction”, or ”feature selection” is the act of either
▶ ignoring data which is obviously not important, or
▶ modifying the data to put it into a form which has fewer dimensions.

We will examine Factor Analysis and Principle Component Analysis (PCA), which are both
dimensionality-reduction techniques.
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Factor analysis

Imagine you’ve got a bunch of data, each with 6
features, x1, x2, ..., x6. You’ve observed that there
are correlations between some of the features.

It’s possible that there might be some underlying,
unobserved, ’factors’, say f1 and f2, which are
responsible for certain features, which is why some
features are correlated to each other.

It would be useful to represent the data through
these factors (also called ”latent variables”), rather
than the original features, since there are presumably
fewer of them, and they are the actual cause of the
feature’s values.

x1

x2

x3

x4

x5

x6

f1

f2

Erik Spence (SciNet HPC Consortium) Unsupervised learning 18 November 2025 6 / 34



Factor analysis, continued

The goal of factor analysis (sometimes called
”exploratory factor analysis”) is to determine
linear relationships between the factors and the
features. Assuming there are only 2 factors, these
relationships would take the form

x1 = β10 + β11f1 + β12f2 + ϵ1

x2 = β20 + β21f1 + β22f2 + ϵ2

...

x6 = β60 + β61f1 + β62f2 + ϵ6

Where the ϵ terms represent noise, and the β
factors are known as ”loadings”.
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Factor analysis, continued more

To calculate the relationships on the previous slide, we will make a few assumptions:

The noise terms, ϵ, are independent, and have a mean of zero.

The unobservable factors are independent of each other, have a mean of zero and a
variance of 1 (the factors have been ’standardized’).

The calculation of the loadings turns out to just be a whole lot of algebra, and correlations.
We won’t delve into the derivation details here.

We generally don’t stop there. The calculation can be refined.

The calculation of the factors is not unique (there are many combinations of loadings
which will give the same answer).

As such we can ”rotate” the answer such that some of the loadings are large, and others
are small. This makes the interpretation of the factors easier.
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Factor analysis, example

Let us do an example. The
first thing that should be done
is to test to make sure that
the features have enough
correlation. There are tests
available to see if factor
analysis is appropriate:

Kaiser-Meyer-Olkin,

Bartlett’s test.

Generally a KMO test value
greater than 0.6 is required for
a factor analysis to proceed.

>

> survey.data <- read.csv(’link below’)

>

> x <- survey.data[,2:13]

>

> library(psych)

>

> KMO(x)

Kaiser-Meyer-Olkin factor adequacy

Call: KMO(r = x)

Overall MSA = 0.83

MSA for each item =

KM1 KM2 KM3 QC1 QC2 QC3 CT1 CT2 CT3 PC1 PC2 PC3

0.87 0.84 0.82 0.88 0.86 0.86 0.83 0.85 0.85 0.70 0.78 0.80

>

Data set: https://raw.githubusercontent.com/housecricket/data/main/efa/sample1.csv
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Factor analysis, example, continued

We plot the eigenvalues which result from the
analysis to determine how many factors we
actually need to keep.

Anything less than 1 is not important, so we
should keep the first four factors.

>

> f.analysis <- fa(x, nfactors = ncol(x),

+ rotate = ’varimax’)

>

> plot(f.analysis$e.values, type = ’b’,

+ pch = 21, bg = ’black)

> abline(h = 1, col = ’red’, lty = 5)

>
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Factor analysis, example, continued more

We can plot loadings of the factors on the
features.

We choose to not display any loadings which are
less than 0.5.

>

> f.analysis2 <- fa(x, nfactors = 4)

>

> fa.diagram(f.analysis2, cut = 0.5)

>
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Factor analysis, final notes

By representing the data using factors, we can now reduce the number of features. We then
feed this representation of the data into our favourite machine learning algorithm.

Some things to be aware of:

Generally, before performing factor analysis, you should perform an ”adequacy test”,
which determines if the data can be factored:

▶ Bartlett’s test,
▶ Kaiser-Meyer-Olkin test.

There are different rotation algorithms available, which may affect the final results.

Note that factor analysis is sometimes controversial, since the final result is not unique, and
thus the interpretation of the factors is subjective.
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Principle component analysis

Principle Component Analysis (PCA), seems similar to Factor Analysis on the surface, but it is
different in important ways. Like Factor Analysis, it is a technique that allows dimensionality
reduction in problems with purely continuous features.

It ignores the data targets; it merely imagines the data as points in a p-dimensional space.

PCA performs a spatial transformation to the data space,

the transformation rotates and scales the data space into directions defined by the
variance in the data.

Singular Value Decomposition is used to perform these steps.

In essence (in linear-algebra-speak), PCA simply projects the data onto a new basis set, where
the important features are clearer.
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PCA, continued

Principle component analysis picks out the
directions the data takes that contain the
most variance.

The direction in which the variance is
highest is rotated to point along the first
axes (the first principal component).
Next along the second axis, etc.

Increasingly higher dimensions are flatter
and flatter, as they have less variance.

The dimensions which have very little
variance contain very little information,
and can be discarded.
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PCA, example

We can perform PCA on the Parkinson’s
data set.

By assigning a column a NULL value the
column will be removed from the data
frame.

PCA is built into base R. No extra
packages are needed.

Once built, the PCA object contains a
tonne of information about the fit,
including the principle components
themselves.

>

> parkinson <- read.csv(’link below’)

> status <- parkinson$status

>

> parkinson$name <- NULL

> parkinson$status <- NULL

>

> park.pca <- prcomp(parkinson,

+ center = TRUE,

+ scale = TRUE)

>

Data source: https://archive.ics.uci.edu/ml/
machine-learning-databases/parkinsons/parkinsons.data
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PCA, example, continued
>

> par(mfrow = c(1,2))

>

> plot(parkinson$MDVP.Fo.Hz.,

+ parkinson$MDVP.Fhi.Hz.,

+ bg = status + 2, pch = 21)

> plot(park.pca$x[,1], park.pca$x[,2],

+ bg = status + 2, pch = 21,

+ xlab = ’PC1’, ylab = ’PC2’)

>

The data is automatically transformed into
the principal-component space.
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PCA, continued more

Of what use is it?

Once you have projected the data onto its principle components, you can determine which
components are most important.

Those dimensions which are least important can be discarded, resulting in a
dimensionality reduction.

Note that PCA in R will not automatically centre the data, this should be done explicitly.

Once projected onto the new space, clustering is sometimes a useful next step. PCA can
sometimes separate clusters that are otherwise difficult to detect.

But how do we decide which components to keep? What is a good criteria? If we don’t throw
away any dimensions we’re no better off than we were before.
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Explained variance
The quality of the PCA, and which components are worth keeping, is indicated in the
”Cumulative Proportion” of the variance that is explained by the component.

58.9% of the variance in the data set lies along the first principle component.

11.3% along the second, etc.

>

> summary(park.pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 3.600 1.577 1.24178 1.21037 0.98687 0.85388 0.7431

Proportion of Variance 0.589 0.113 0.07009 0.06659 0.04427 0.03314 0.0251 . . .
Cumulative Proportion 0.589 0.702 0.77209 0.83868 0.88295 0.91609 0.9412

>

94% of the variance is explained by the first seven principle components.
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Using eigenvalues
Alternatively, we can use the
eigenvalues to determine which
principal components are worth
keeping. The variances plotted are
the eigenvalues in this case.

An eigenvalue of less than 1
indicates that the component
contains less information than the
original data features.

> plot(park.pca, type = ’l’)

> abline(h = 1, col = ’red’, lty = 5)

>
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PCA, summary

Some further notes about PCA:

PCA doesn’t drop features; rather, it generates combinations of all features in order of
how significantly they vary.

One generally keeps most of the information from all features, but expressed in a number
of combinations k < p.

However, especially in situations with a large number of dimensions, the least significant
principal components can often be profitably ignored, as there is very little variation in
those directions.

Once projected onto the new space, clustering is sometimes a useful next step. PCA can
sometimes separate clusters that are otherwise difficult to detect.

Note there are other types of dimensionality reduction as well: Locally Linear Embedding
(LLE), Linear Discriminant Analysis (LDA), Principle Coordinate Analysis, and others.
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Clustering

Let’s switch to a different sort of classification approach: clustering.

This is a type unsupervised learning.

It’s unsupervised because there are no targets (labels, y values) used.

This can show up in all sorts of applications:

Finding patterns in properties of galaxies.

Determine proteins with similar interaction types.

Market segmentation.

”Customers who buy X often buy...”.

There are two main clustering approaches you’ll run into: k-means and hierarchical clustering.
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Clustering, continued

The reason for using algorithms to find clusters in the data is because

It’s difficult to find clusters in high-dimensional data (since you can’t visualize it all).

You might want to summarize a large number of observations into fewer, similar clusters.

Obviously, we haven’t defined what we mean by ”similar” or ”cluster” yet.

A ”cluster” is a group of data points which are gathered around some central point.

The ”similarity” between points is determined by some measure of ”distance” between
them, in the p dimensional space in which they live.

In continuous spaces the distance can be Euclidean, or some other measure of distance
(L1 norm).

In ordinal spaces (bag-of-words counts, for example) you can use the ”cosine similarity”

cos θ = A·B
|A||B|
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k-means clustering

k-means clustering is a geometric clustering algorithm which finds roughly-spherical blobs of
clusters amongst the data. The algorithm is straightforward. Starting with k initial cluster
centres:

Assign each data point to the nearest centre.

Recalculate the centre of each cluster, based on its members.

Move the centres to the new locations.

Repeat until converged (the centres stop moving).

The value of k must be specified before starting.
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k-means clustering, example

As you might expect, k-means is built
into base R.

Because this is a geometric problem, we
want to centre and scale the data. The
’scale’ function will do this to each
column.

Once the model is trained, you can get
the centres of the clusters, and the
predicted labels, using the ”cluster” and
”centres” model entries.

>

> scale.iris <- scale(iris[, -5], center = TRUE,

+ scale = TRUE)

>

> iris.kmeans <- kmeans(scale.iris, 3,

+ nstart = 10)

>

> plot(scale.iris[,1], scale.iris[,3],

+ bg = iris.kmeans$cluster,

+ pch = 21, xlab = ’Sepal length’,

+ ylab = ’Petal length’)

>

> points(iris.kmeans$centers[,1],

+ iris.kmeans$centers[,3], bg = ’orange’,

+ cex = 2, pch = 21)

>
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k-means clustering, example, continued
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k-means clustering, continued

k-means has both strengths and weaknesses.

You need to know what value of k to use.

Random initialization of the centres can go badly wrong.

For this to be robust, you need to repeat many times.

We do this explicitly by specifying the nstart flag; the best result is returned.

k-means has a tendency to make equally-populated clusters, which can lead to incorrect
results.

For this to work consistently, we need a way to measure the quality of the model.
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k-means clustering, quality measures

A few measures of error have been developed for k-means.

We’d like to minimize the within-cluster sum of squares, where µi is the centre of the ith
cluster.

WCSS =

k∑
i

∑
j∈Si

|xj − µi|2

We’d like to maximize the between-cluster sum of squares.

ICSS =

n∑
i

n∑
j

δ(Si, Sj) |xi − xj|2

These are output by standard k-means algorithms.
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k-means and cross-validation
How do we pick k? You
guessed it!

For reasons aren’t clear,
cross-validation is not
available for k-means.

The createFolds function
will return the indices of
the folds.

The cl predict function
will predict the categories
(based on cluster) that
each point belongs to.

The total WCSS is
returned.

> library(caret) # needed for the createFolds function

> library(clue) # needed for the cl prediction function

> kmean.wcss <- function(k, i.data) {
+ folds <- createFolds(i.data[,1], k = 10)

+ total <- 0

+ for (ind in 1:10) {
+ train.data <- i.data[-folds[[ind]],]

+ test.data <- i.data[folds[[ind]],]

+ model <- kmeans(train.data, k, nstart = 10)

+ pred <- cl predict(model, test.data)

+ diff <- model$centers[pred,] - test.data

+ total <- total + sum(apply(diff, MARGIN = 1,

+ function(x) return(sum(x**2))))

+ }
+ return(total)

+ }
>
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k-means and cross-validation, continued

>

> plot(sapply(1:20, kmean.wcss,

+ scale.iris),

+ type = ’b’, xlab = ’k’,

+ ylab = ’WCSS’)

>

Unlike other algorithms, like kNN or
polynomial fits, the accuracy of
k-means does not ’turn over’,
meaning start to get worse with
increasing k.
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Agglomerative clustering

K-means uses a geometric approach to clustering. Hierarchical clustering works point-by-point.

Agglomerative (bottom up) clustering:

All data points start in their own cluster.

At each iteration, the two ”best matching” are joined into the same cluster.

Repeat until there is only cluster left.

This builds a tree of connections. This tree then needs to be pruned to distinguish the
clusters. To do this we need some sort of distance metric, or some sort of linkage criteria,
which specifies the dissimilarity of the clusters.

k-means-like: what is the distance between the centres of the clusters which have been
built thus far?

single linkage: what is the minimum distance between any two points in two clusters.

mean linkage: what is the mean distance between all points in two clusters?
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Agglomerative clustering, example

The ’dist’ function calculates a distance
matrix, which gives the ’distance’ between
each data point. It returns the lower
triangle of the matrix, without the
diagonal.

Because calculating the distance matrix is
a geometric function, it’s best to centre
and scale the data, to put all dimensions
on the same footing.

The ’hclust’ function builds the cluster
from the distance matrix.

>

> ind <- sample(1:nrow(iris), 40)

>

> scale.iris <- scale.iris[ind,]

> labels <- iris[ind, 5]

>

> iris.d <- dist(scale.iris,

+ method = ’euclidean’)

>

> cluster <- hclust(iris.d,

+ method = ’average’)

>
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Agglomerative clustering, plotting

>

> plot(cluster,

+ label = labels)

>

> rect.hclust(cluster, k = 3,

+ border = ’red’)

>

As we can see, agglomerative
clustering doesn’t do as good
a job separating our known
categories, in this case, as
k-means.
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Scikit-learn clustering algorithms

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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Summary

Some things to remember:

Factor Analysis recasts the data as linear combinations of factors.

PCA projects the data onto a new basis set, based on the variance in the data.

By discarding the dimensions with minimal variance the dimensionality of the problem can
be reduced.

PCA results are also often used as the input to clustering algorithms, since the major
sources of variance have already been isolated.

Clustering algorithms group data into ’clusters’ of common attributes.

k-means find clusters by finding the centres of clusters of data. k-means requires k to be
specified.

Hierarchical clustering finds clusters by building up a tree point-by-point, minimizing the
distance between data points.
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