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Classification Approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ‘decisions’ about how to ‘split’
the data into uniform groups.
Logistic regression: like linear regression, but now we fit a “yes/no” function to the data.
Naive Bayes: a type of probabilistic analysis.
kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the
category of a new data point.
Support Vector Machines: essentially a linear model of the data, used for separate
groups.
Neural networks: a weird algorithmic approach to using functions to categorize data.

Today we will go over logistic regression and support vector machines.
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Fitting a Line to Categorical Data

We have the following data and we want to know how well we can predict the Outcome column:

x Outcome

-2.5 No
-1.5 No
-0.5 No
0.5 Yes
1.5 Yes
2.5 Yes

We can replace ‘No’ with 0, ‘Yes’ with 1, and fit a line. Let’s do this.
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Logistic Regression

A simple but flawed approach is to apply linear
regression to the 0/1 outcome, then classify
based on whether the prediction exceeds 0.5.

However, linear regression can produce
predictions outside [0,1], making it unsuitable
for probabilities, and its assumptions may not
hold for classification boundaries.

We also introduced a numerical relationship
between the Yes and No outcomes, which
may not exist.
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The Logistic (Sigmoid) Function
Logistic regression uses the sigmoid function
to map linear predictions to probabilities:

p = 1
1 + e−x·β

p is the predicted probability of the
positive class (“Yes”).
x represents the input features
(measurements).
β are the model coefficients (weights)
learned from the data.

Outputs are between 0 and 1.

Provides probabilistic predictions for binary
classification.
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Logistic regression, example

Logistic regression in R is
usually performed using a glm.

You will need to install the
‘mlbench’ package to get
this data.
The ‘complete.cases’
function returns a boolean
vector, indicating which
rows have complete data.
We specify “family =
‘binomial’ ” when we want
to perform logistic
regression.

> data(BreastCancer, package = 'mlbench')
>
> bc <- BreastCancer[complete.cases(BreastCancer),]
>
> ind <- sample(c(TRUE, FALSE), nrow(bc),
+ replace = TRUE, prob = c(0.7, 0.3))
>
> train.d <- bc[ind,]
> test.d <- bc[!ind,]
>
> model <- glm(Class ~ Cl.thickness + Cell.size +
+ Cell.shape, family = 'binomial',
+ data = train.d)
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Logistic regression, example, continued
Predictions using logistic
regression need some
postprocessing.

Use the “type = ‘response’ ”
flag when using predict with
logistic regression.
The returned values are
probabilities of ‘success’.
These must be converted to
a classification.
The ifelse function applies a
conditional to each element,
and returns the first
argument for a TRUE value,
the second for FALSE.

> pred <- predict(model, newdata = test.d,
+ type = 'response')
> new.pred <- ifelse(pred > 0.5,
+ 'malignant', 'benign')
> conf <- table(test.d$Class, as.factor(new.pred))
> conf

benign malignant
benign 122 4
malignant 4 60
>
> sum(diag(conf)) / sum(conf)
[1] 0.9578947
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Evaluating binary classifiers

Binary classification is a common and important enough special case that its confusion matrix
elements have special names, and various quality measures are defined.

Note that “Positive” here refers to “category 1” and “Negative” means “category 0”.

Classified Positive (CP) Classified Negative (CN)

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

One can always get exactly one of FN or FP to be zero (for example, just classify everything
positive, then there will never be any false negatives).

But there is usually a tradeoff between false positives and false negatives.
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Classification thresholds

In most binary classifiers, there’s some
equivalent of a threshold you can set. This
threshold determines when a given data point
moves from one categorization to the other.

For the case of logistic regression, the default
threshold is 0.5.

Set it lower (allow more true, but also
false, positives).
Set it higher (allow more true, but also
false, negatives).

Note that 0.5 is arbitrary; in some fields
(medical screening), lower thresholds allow
more false positives to minimize missed cases.
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ROC curve

By varying the classification threshold, from 1
to 0, we can get a collection of points for the
TPR and FPR. Plotting the two measures on
either axis gives a ROC (Receiver Operating
Characteristic) curve.

The diagonal line represents random
chance.
We want our curve to be as high above
the diagonal as possible.

ROC Curve for Logistic Regression
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How to Read an ROC Curve
The ROC curve is built by varying the classification
threshold from 1 to 0:

Start at lower-left (threshold = 1): FPR = 0, TPR
= 0 – nothing classified as positive.
Lower to 0.9, 0.8: TPR rises (correct positives), FPR
stays 0 (no false positives yet).
Toward 0.5: TPR higher, FPR starts rising due to
noisy data (some false positives).
Around the curve’s corner: Balancing TP and FP.
At 0.3, 0.2: TPR approaches 1 (most positives
caught), FPR higher.
At threshold = 0: TPR = 1, FPR = 1 – everything
classified as positive (all TP, all FP).

Better curves hug the top-left; diagonal is random
(AUC=0.5).

ROC Curve for Logistic Regression
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ROC curve, continued

> library(ROCR)
> ROC.pred <- prediction(pred,
+ test.d$Class)
> ROC.perf <- performance(ROC.pred,
+ measure = 'tpr',
+ x.measure = 'fpr')
> plot(ROC.perf, type = 'b', pch = 21,
+ bg = 'blue')
> lines(c(0, 1), c(0, 1), lty = 2)

ROC Curve for Logistic Regression
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Note that your curve will look different from
this one, due to randomness.
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ROC curve, continued more

The quality of a classifier is given by the ROC
curve’s AUC (area under the curve).

The worst classifiers will have an AUC
near 0.5.
Good classifiers have an AUC near 1.0.

For the non-binary classification situation, you
create “one versus all” ROC curves, with one
ROC curve for each category.
> ROC.AUC <- performance(ROC.pred,
+ measure = 'auc')
> ROC.AUC@y.values
[[1]]
[1] 0.9786706

ROC Curve for Logistic Regression
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Support Vector Machines

Support Vector Machines (SVM) are
geometric algorithms that find the optimal
hyperplane to linearly separate data into
categories.

Linear SVMs determine a hyperplane which
linearly separates the data set into distinct
categories.

The goal is to find the plane farthest from all
closest points (support vectors) in
k-dimensional space.

This is formulated as a minimization problem.
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Support Vector Machines, example

To demonstrate the use of Support Vector Machines we will use the heart disease data set.

Note that this dataset does not have a header row and has 13 features.

The hyper-plane which passes through the data will be 12D.
> url <- 'https://dataaspirant.com/wp-content/uploads/2017/01/heart_tidy.csv'
> heart.data <- read.csv(url, header = F)
> heart.data$V14 <- as.factor(heart.data$V14)
>
> ind <- sample(c(TRUE, FALSE), nrow(heart.data),
+ replace = TRUE, prob = c(0.7, 0.3))
>
> train.d <- heart.data[ind,]
> test.d <- heart.data[!ind,]
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Support Vector Machines, example

We use cross-validation to tune the SVM parameters.

Centering and scaling the data is important since SVM is a geometric algorithm sensitive to
feature scales.
> library(caret)
> svmFit <- train(V14 ~ .,
+ data = train.d, method = 'svmLinear',
+ preProcess = c('center', 'scale'),
+ trControl = trainControl(method = 'cv', number = 10),
+ tuneLength = 10) # Tries 10 values of the C parameter

Parameter C controls how much we penalize misclassifications: higher C for noisy data (stricter),
lower C for clean data (wider margin).
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Support Vector Machines, example, continued

Support Vector Machines take an
optional argument, ‘C’ (the penalty
parameter).

Large values of C mean that we
lack confidence in the data’s
distribution (noisy data).
Small values mean the opposite.
Default value is 1.0.

> pred <- predict(svmFit, newdata = test.d)

> confusionMatrix(pred, test.d$V14)
Confusion Matrix and Statistics

Reference
Prediction 0 1

0 42 9
1 5 32

Accuracy : 0.8409
...
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Nonlinear Support Vector Machines

Linear Support Vector Machines are all well
and good if your data are linearly separated.
But suppose we have multiple groups and a
straight line is not going to separate well
between them.

As we can see in the example at right, you
can imagine situations where there are clearly
defined clusters of data, but fitting linearly is
not an option. −2
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Nonlinear Support Vector Machines, continued

We have a technique which is quite good at finding hyperplanes in linearly separated data.

If the data are not linearly separated, the solution, obviously (!), is to nonlinearly transform
the data into a space where it is linearly separable.
This typically involves adding dimensions to the data which did not previously exist.
This increases the likelihood of making things linearly separable (Cover’s theorem).

Great! But how do we figure out what transformation to apply to the data?

We don’t. We let the SVM kernel do the work for us.
SVMs use ‘kernel functions’ to transform the data into the required form.
There are many types of kernel functions available: linear (which we’ve already been using),
polynomial, radial basis function (RBF), sigmoid, and others.
Once the hyperplane has been determined in the transformed space, the hyperplane is
transformed back into regular data space.

Alexey Fedoseev Classification II November 13, 2025 19 / 24



Nonlinear SVM, example

Invoking a nonlinear support vector
machine is as simple as specifying
“svmRadial” (for the radial basis
function kernel).

Because the result has so many
dimensions we’re not going to try to
plot the actual plane.

> svmNLFit <- train(V14 ~ .,
+ data = train.d, method = 'svmRadial',
+ preProcess = c('center', 'scale'),
+ trControl = trainControl(method = 'cv',
+ number = 10),
+ tuneLength = 10)
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Nonlinear SVM, example, continued

Cross-validation was
used to tune the
(hidden)
hyperparameters.

Printing out the
model shows how the
accuracy changed as
a function of the
cost (‘penalty’)
hyperparameter.

> svmNLFit
Support Vector Machines with Radial Basis Function Kernel
...
C Accuracy Kappa
0.25 0.8351299 0.6628577
0.50 0.8353680 0.6632606
1.00 0.8256061 0.6434020
...
64.00 0.7579870 0.5100520
128.00 0.7627489 0.5197271

Tuning parameter 'sigma' was held at a value of 0.04483339
Accuracy was used to select the optimal model...
The final model values were sigma = 0.04483339 and C = 0.5
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Nonlinear SVM, example, continued more

We can plot the cross-validation accuracy as a
function of the cost parameter.
> plot(svmNLFit)
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Nonlinear SVM, example, continued even more

As always, we’re interested in
how well the model does on the
test data.

The nonlinear SVM model does
slightly better on the test data
than the linear SVM, though not
much.

> NLpred <- predict(svmNLFit, newdata = test.d)
>
> confusionMatrix(NLpred, test.d$V14)
Confusion Matrix and Statistics

Reference
Prediction 0 1

0 43 9
1 4 32

Accuracy : 0.8523
...
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Summary
You’ve now seen four classification algorithms: decision trees, logistic regression, kNN and SVM.
Some things to remember:

Logistic regression:
▶ not prone to over-fitting.
▶ can work well with noisy data.
▶ assumes (requires) there is a single smooth boundary between categories. This implies

categories are linearly or nonlinearly separable without complex shapes. However, models like
decision trees can handle jagged boundaries.

SVM:
▶ a geometric technique,
▶ builds a hyperplane that separates the data into groups.
▶ nonlinear SVM projects the data into a higher-dimensional space to build the plane, then

returns the plane to regular space.

There are guidelines you can use, but ultimately experience and experimentation is most
important.
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