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Today’s slides

Today’s slides can be found here. Go to the ”Introduction to Computational BioStatistics with
R” page, under Lectures, ”Mixed-effects models”.

https://scinet.courses/1391
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Today’s class

Today we will continue our adventures in data analysis.

Random and fixed effects.

Mixed-effects models.

Random intercept model.

Random slope model.

Partial pooling.

As always, ask questions.
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Sometimes a linear model doesn’t cut it

There are times when a linear model is not sufficient to capture all the characteristics of your
data.

Sometimes the independence assumption of your data is not true
▶ repeated measures of the same subject (’longitudinal data’),
▶ measurements that are part of specific groups that cause them to be correlated in some way,

The data contain a natural hierarchy that should be respected: students within a class,
TAs for students within a class.

If you find yourself in a situation where the data is correlated by group, whatever that might
be, then a mixed-effects model might be appropriate. The important part is that there are
groups in your data.
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Mixed-effects models

Mixed-effects models (also called ”multilevel” or ”hierarchical” models) are used when we wish
to separately account for what are known as ”fixed” and ”random” effects.

The “fixed” effects are your standard independent variables that we assume have some
sort of effect on the dependent variable. These are the same across all groups.

The “random” effects are (always) categorical variables that affect the dependent variable
in a consistent way. These are groups, individuals or categories associated with your data.

We want to control for the random variables in our model, since (we know) they are likely
affecting the model.

Random effects must have many (at least 5) different levels (values) for mixed effect
models to work properly.

If random effects are correlated with the independent variables, leaving them out could lead to
biases in the results.
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Types of mixed effects models

There are several ways to try to adjust our linear model for random effects.

Random intercepts: y = β0j + β1x. In this case, the intercept is adjusted by group j,
but the slopes are the same for all groups.

Random slopes: y = β0 + β1jx. In this case, the slope is adjusted by group j, but the
intercepts are all the same.

Random slopes and intercepts: y = β0j + β1jx. In this case, both the intercept and
slope is adjusted by group j.

Usually either the intercept is a random effect, or both the intercept and the slope are random
effects.
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Types of mixed effects models, continued
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Isn’t that just a categorical variable?
Is this the same as a regular linear model with a categorical independent variable? Not quite:

The difference lies in how the category-level structure in the data is treated.

When a categorical variable is added to a linear model, it’s treated as an independent
variable, with each category value getting its own coefficient (β).

This treats the category as a characteristic, allowing comparisons between categories.

In a mixed-effects model, the categorical variable is treated not as an independent
variable, but as a ”random effect”.

The model will assume that categorical-level effects (variations within a category) are
drawn from a normal distribution, sampled from a larger population.

This allows for the calculation of the variance within the group, which helps clarify the
non-independence of the groups.

Though they sometimes lead to similar results (for random intercepts), mixed-effect models
are more flexible.
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Random intercepts models

There are several different types of mixed-effects models, depending on how the problem is
crafted, and how things are set up. The first is known as the ’random intercepts’ model:

y = β0 + β1x + βgroup + ϵ

where you have a regular linear model, but with an extra random effect. This random effect is
given by

βgroup = N(0, τgroup)

where N is the normal distribution with mean of 0 and a variance of τgroup. This value is fit
for each group.

A similar derivation leads to the random-slopes model.
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Random intercept model, example
We can use Simpson’s paradox data to
illustrate the utility of random intercept
models. We’ll generate the data explicitly.

> library(bayestestR)

>

> my.data <- simulate simpson(r = 0.95,

+ groups = 5)

> str(my.data)

’data.frame’: 500 obs. of 3 variables:

$V1 : num 0.689 2.3089 1.4768 0.0618 ...

$V2 : num -1.336 0.091 -0.377 -1.575 ...

$Group: chr "G 1" "G 1" "G 1" "G 1" ...

>

> plot(my.data$V1, my.data$V2)

> m1 <- lm(V2 ~ V1, data = my.data)

> abline(m1)
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Random intercept model, example, continued
We use the lme4 package to create
mixed-effects models.

The term “(1 | Group)” indicates
that we’re allowing the model
intercept to vary by Group.

Because the random effects are
drawn from a normal distribution
centred on zero, there are no
estimates for the values.

Notice the lack of p-values. These
are complicated to calculate in a
mixed-effects model, and are a
subject of discussion.

> library(lme4)

> my.data$Group <- as.factor(my.data$Group)

> m2 <- lmer(V2 ~ V1 + (1 | Group), data = my.data)

>

> summary(m2)
.
.
.

Random effects:
Groups Name Variance Std.Dev.

Group (Intercept) 9.5018 3.0825

Residual 0.0977 0.3126
Number of obs: 500, groups: Group, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) -5.84879 1.37925 -4.241

V1 0.94960 0.01405 67.600

.

.

.
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Random intercept model, example, continued more

We can also get the actual values of
our random effects intercepts, for
each group.

>

> ranef(m2)

$Group

(Intercept)

G 1 3.898789e+00

G 2 1.949395e+00

G 3 1.477107e-10

G 4 -1.949395e+00

G 5 -3.898789e+00
with conditional variances for ‘‘Group’’

>
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Random intercept model, example, plotted
>

> library(ggplot2)

>

> ggplot(my.data,

+ aes(x = V1, y = V2, col = Group)) +

+ geom point() +

+ geom line(data = cbind(my.data,

+ y.hat = predict(m2)),

+ aes(x = V1, y = y.hat))

>
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Random intercept model, example, residuals
>

> par(mfrow = c(2, 1))

>

> plot(predict(m1), m1$residuals,

+ pch = 21, bg = ’black’,

+ xlab = ’fit value’,

+ ylab = ’residuals’)

>

> plot(predict(m2), resid(m2),

+ pch = 21, bg = ’black’,

+ xlab = ’fit value’,

+ ylab = ’residuals’)

>

> par(mfrow = c(1, 1))

>
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Random slope model, example

A random slope model works the same way
as a random intercept model, except the
random component affects the slope rather
than the intercept.

We’ll use the ’ex33’ data set from the
VetResearchLMM package.

> library(VetResearchLMM)

>

> ggplot(data = ex33,

+ aes(x = time, y = PCV)) +

+ geom smooth(method = ’lm’, se = F,

+ lwd = 1.5) +

+ geom point(size = 4,

+ aes(colour = animal id))
15

20

25

30

35

40

0 10 20 30
time

P
C

V

animal_id
BO1
BO209
BO241
BO322
BO326 
BO37
ND60
ND66
ND72
ND73
ND74
ND75

Erik Spence Mixed-effects models 4 November 2025 15 / 31



Random slope model, example, continued

In this case we include the term
“(time | animal id)”, which
indicates that the slope of time
will vary by the animal id.

Just as in the past we used ’1’ to
indicate the presence of an
intercept in the model, here we
use ’0’ to indicate no intercept
dependence on the animal id.

By default lmer will put in an
intercept.

> model <- lmer(PCV ~ time + (0 + time | animal id),

+ data = ex33)

>

> summary(model)
.
.
.

Random effects:
Groups Name Variance Std.Dev.

animal id time 0.01343 0.1159

Residual 7.66434 2.7685
Number of obs: 168, groups: animal id, 12

Fixed effects:
Estimate Std. Error t value

(Intercept) 34.64075 0.39444 87.822

time -0.34514 0.03886 -8.882

.

.

.
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Random intercept model, example, plotted
>

> library(ggplot2)

>

> ggplot(ex33,

+ aes(x = time, y = PCV, col = animal id)) +

+ geom point() +

+ geom line(data = cbind(my.data,

+ y.hat = predict(model)),

+ aes(x = time, y = y.hat))

>
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Crossed data
There are other types of mixed-effects data you need to know about:

If you have data where each data point can be assigned to more than one random effect
simultaneously, the data is said to be “crossed”.

An example would be a repeated measures study, where each subject is observed
responding to several different effects.

In this case the random effects are both the subjects be studied and the various responses
being observed.

In this case indicate that the model should respond to both random effects.

A within-subjects study would be an example (all subjects are exposed to all values of a
categorical variable).

> lmer(Response ~ Condition + (1 | Subject) + (1 | Item), data = my.data)
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Nested data

Sometimes our data aren’t crossed, they’re instead “nested”:

nested data occur when you have groups, and then groups within groups (subgroups).

all of these groups are independent of each other.

An example might be:
▶ schools,
▶ classes within the school,
▶ students within the class

There is a hierarchy of data groups.

> lmer(Outcome ~ Condition + (1 | School/Class/Student), data = my.data)
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Partial pooling

The term “pooling” refers to how much information is shared between groups.

If no information is shared between groups the model is sometimes called a “no pooling”
model. This means each group is fit separately from all the other groups.

If all information is shared, regardless of groups, such as in our standard linear model
using the lm function, the model is called “complete pooling”.

The term “partial pooling” refers to a mixed-effects model, wherein a model shares
information across groups, but also accounts for random effects within groups.

Why do we care? Partial pooling allows us to “help out” groups that have less data than other
groups.
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Partial pooling example

Let’s explore the “sleepstudy”
data set, which comes with the
lme4 package.

This data contains the measured
reaction times of subjects who
were deprived of sleep.

To illustrate partial-pooling we
will add two new subjects, who
have incomplete data.

Example stolen from Glenn Williams and
Tristan Mahr.

> library(tidyverse)

> str(sleepstudy)

’data.frame’: 180 obs. of 3 variables:

$Reaction: num 250 259 251 321 357 ...

$Days : num 0 1 2 3 4 5 6 7 8 9 ...

$Subject : Factor w/ 18 levels "308","309",..: 1 1 ...

>

> my.data <- sleepstudy

>

> my.data <- rbind(my.data, data.frame(Days = 0:1,

+ Reaction = c(286, 288),

+ Subject = "374"))

>

> my.data <- rbind(my.data, data.frame(Days = 0,

+ Reaction = 245, Subject = "373"))

>
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Partial pooling example: complete pooling

First, complete pooling.

>

> complete.pooling <- lm(Reaction ~ Days, data = my.data)

>

> complete <- data.frame(Subject = levels(my.data$Subject),

+ Intercept = coef(complete.pooling)[[1]],

+ Slope = coef(complete.pooling)[[2]],

+ Model = "Complete Pooling")

>

> comp.coefs <- left join(my.data, complete, by = "Subject")

>
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Partial pooling example: complete pooling, continued
>

> p <- ggplot(data = comp.coefs,

+ aes(x = Days, y = Reaction)) +

+ geom point() + theme bw() +

+ facet wrap(~Subject) +

+ geom abline(

+ aes(intercept = Intercept,

+ slope = Slope,

+ color = Model)) +

+ labs(color = ’Pooling’)

>

All information is shared, so the
line is the same for every plot.
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Partial pooling example: no pooling

Next we will build the no-pooling
case. This means that each group
gets an independent linear fit.

Again, we need to explicitly
indicate that we want no
intercept, this time for the fixed
effects.

We create an Intercept column,
as it will be easier to reference. R
doesn’t like parentheses at the
start of column names.

>

> no.pooling <- lmer(Reaction ~ 0 + (Days | Subject),

+ data = my.data)

>

> no.pooling.coefs <- coef(no.pooling)$Subject

>

> no.pooling.coefs[["Intercept"]] <-

+ no.pooling.coefs[["(Intercept)"]]

>

> none <- data.frame(

+ Subject = levels(my.data$Subject),

+ Intercept = no.pooling.coefs$Intercept,

+ Slope = no.pooling.coefs$Days,

+ Model = "No Pooling")

>
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Partial pooling example: no pooling, continued

The bind rows function is part of
tidyverse.

What is this weird syntax? The
“%+%” operator comes with the
tidyverse package.

>

> none.coefs <- left join(my.data,

+ none, by = "Subject")

>

> comp.none <- bind rows(comp.coefs,

+ none.coefs)

>

> p %+% comp.none

>
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Partial pooling example: partial pooling

Next we will build the
partial-pooling case. This
means that each group gets a
linear fit, using the information
gained from the other groups.

>

> partial.pooling <- lmer(Reaction ~ Days +

+ (1 + Days | Subject),

+ data = my.data)

>

> partial.pooling.coefs <- coef(partial.pooling)$Subject

>

> partial.pooling.coefs[["Intercept"]] <-

+ partial.pooling.coefs[["(Intercept)"]]

>

> partial <- data.frame(

+ Subject = levels(my.data$Subject),

+ Intercept = partial.pooling.coefs$Intercept,

+ Slope = partial.pooling.coefs$Days,

+ Model = "Partial Pooling")

>
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Partial pooling example: partial pooling, continued
>

> partial.coefs <- left join(my.data,

+ partial, by = "Subject")

>

> all.pools <- bind rows(comp.none,

+ partial.coefs)

>

> p %+% all.pools

>

370 371 372 373 374

349 350 351 352 369

332 333 334 335 337

308 309 310 330 331

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

200

300

400

200

300

400

200

300

400

200

300

400

Days

R
ea

ct
io

n

Pooling

Complete Pooling

No Pooling

Partial Pooling

Erik Spence Mixed-effects models 4 November 2025 27 / 31



Partial pooling, what’s the point?

Partial pooling allows groups
with less data to leverage the
behaviour of the other groups.

The no-pooling result tends to
get pulled toward the average,
“complete pooling”, result.
This is called “shrinkage”. 373 374
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Mixed-effect model assumptions

Like all models, mixed-effect models come with their own set of assumptions.

The data should be bivariate normality within groups.

The coefficients for the random variables are assumed to follow a normal distribution,
with a mean of zero.

Homoscedasticity of the noise, across groups and independent variables.

If your data are not independent, such as when you have multiple samples from a single
subject, you must consider that a group.

Multicollinearity can be a problem with mixed-effects models, just as in regular linear
models.

These should be familiar, as they are mostly the usual linear-model assumptions we’ve made in
the past.
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Other considerations

Further notes about mixed-effect models

If your model is not homoskedastic, you may wish to consider generalized mixed-effect
models. These are similar to the mixed effect models we’ve discussed:

▶ specify a link function,
▶ specify a noise family,
▶ use the “glmer” function instead.

Power analysis of mixed-effect models is possible, but this requires direct simulation
rather than mere theory. Look into the “simr” package if you’re interested.
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Summary

Mixed-effect models separate our “fixed effects” from our “random effects”.

Fixed effects are our linear models as usual.

Random effects are group effects which account for correlations of data within a group.

Random intercepts and random slopes can be fit by group.

Partial pooling of the model results in data from other groups affect the predictions of the
final model for other groups.

This allows groups with less data to leverage the behaviour of data in other groups.
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