Introduction to Computational BioStatistics with R:
generalized linear models

Erik Spence

28 October 2025

Scilet

Erik Spence Generalized linear models 28 October 2025 1/31



Today'’s slides

Today's slides can be found here. Go to the “Introduction to Computational BioStatistics with
R" page, under Lectures, “Generalized Linear Models”.

https://scinet.courses/1391
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https://scinet.courses/1391

Today’s class

Today we will continue our adventures in data analysis.

@ Verification of models.
@ Confounding variables.

@ Generalized linear models.

As always, ask questions.
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Our linear model

At the end of last class we had created
a linear model to describe the e
relationship between Girth and Volume.

60
|

> ® B+
> model <- lm(Volume ~ Girth, |

+ data = trees) ? S
S £

> plot(trees$Girth, trees$Volume) 2 -
> abline(model)

> Q -

10
|
o

How do we assess the quality of our ‘ ‘ ‘ ‘ ‘ ‘ ‘
model? 8 10 12 14 16 18

20
trees$Girth
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Our linear model, continued

As noted last class, the
summary gives important
information:

@ Information about the
null hypothesis
[31 = = ﬂan =0.
@ Information about the
individual null
hypotheses: 31 = 0,
B2 = 0, etc.
Remember that the
significance code only tells
you the likelihood that

Bi = 0.
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> summary (model)
Call:
Im(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) -36.9435 3.3651 -10.98

Girth 5.0659 0.2474 20.48
Signif. codes: O ‘**x’> 0.001 ‘**> 0.01 ‘%’ 0.05 .’

Residual standard error:
Multiple R-squared:
419.4 on 1 and 29 DF, p-value:

0.9353, Adjusted R-squared: 0.933

F-statistic: < 2.2e-16

7.62e-12  *xx
< 2e-16 *okk

4.252 on 29 degrees of freedom

0.1 ¢ 1

1

>
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That’s great, but we’re not done yet

It's always a good idea to do some further analysis of your model before declaring success.
There are a few things in particular that should always be done.

@ plot the residuals of the model, in various ways,
@ examine the statistics of the residuals,

@ examine the statistics of the model.

What are residuals? Residuals are the distance between the actual value, and the value
predicted by the model, for each data point:

R; = f(zi) — yi
where f is the model, evaluated at data point x;, and y; is the actual value of the dependent

variable.
Schet
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Step 1: plot the residuals

Always plot your residuals. Always. o 7 7 .
> par(mfrow = c(1, 3))
>
> plot(model$residuals) o * . P . P o
> plot(trees$Volume, model$residuals) LI * . o * L *
> plot(trees$Girth, model$residuals) 2 ‘. 2 °. 2 ‘.
> % . g . % .
‘fé o ': .. § o ': : § o ': y
. . . g . g . ° 2 . °
Plot your residuals against everything: . . .
@ index, . o0t
@ against the dependent variables, o . ol S
@ against the independent variables. . ° . .
You should see a snowstorm. There . .

.

should be no structure. o b 1 A . ém
Index trees$Volume et
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Step 1: plot the residuals, continued

o
=

Plot your residuals some more. -

10

> plot(trees$Height, model$residuals)

> plot(predict(model), model$residuals)

> plot(model$residuals**2) ’ * ’
> . °

Plot your residuals against everything:

model$residuals
.
.
model$residuals

@ against independent variables that
are not part of the model (if
possible), R

@ against the predicted values, 0 - y i

@ plot the square of the residuals. .

The residuals squared should be steady .

)
60

.
.
model$residuals"2
.

40

20
I
o

T T
in value if the noise is homoskedastic. 65 70 75 80 85
trees$Height
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Step 1: plot the residuals, continued more

o
-

If your data are related to each other,
meaning your x values were measured
regularly in space or in time, then it's a
good idea to plot the residuals against 0 *
each other.

> par(mfrow = c(1, 1))
>

model$residuals[2:n]
[ ]

> n <- nrow(trees)
> plot(model$residuals[1:(n-1)], ° ®
+ model$residuals([2:n])
>

Again, the residuals should be

uncorrelated, with no blobs or bands. ‘ ‘ ‘ ‘ ‘ ‘
-8 -6 -4 -2 0 2

T
4
model$residuals[1:(n - 1)] m et
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Step 2: plot the residuals via histogram

Always plot a histogram of your residuals.
Things to look for: ~

@ The mean should be zero. If your o |
residuals are not centred on zero your
model is missing something.

@ The distribution should be symmetric.
If it's not, it's biased (there 'structure’
in the data which has not been

Frequency

Histogram of model$residuals

captured by the model). ~

e Distribution should be a Gaussian (an
assumption made as part of the fit). ™ r

> par(mfrow = c(1, 1))

> hist(model$residuals, breaks = 11) -10
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T 1
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model$residuals M et
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Step 3: plot the residuals

Plot your residuals on a Q-Q plot.

o A Q-Q plot graphically demonstrates
how normally-distributed the residuals
are.

@ ldeally the residuals should be
normally distributed.

@ A perfect Gaussian will lie exactly on
the line.

via Q-Q plot

Sample Quantiles

>

> ggnorm(model$residuals)

> gqline(model$residuals)

>

10

-5

Normal Q-Q Plot

T T
1 2
Theoretical Quantiles m et

Erik Spence Generalized linear models 28 October 2025 11/31



Using R2

R? is a highly mis-used
statistical result of building
a linear model.

R2 — 1_Zi (yi — f('%’i))z

> (v — 9)?

Some people say that R? =
(explained variation) /
(total variation). This is
dodgy at best, as we'll see
on the next slide.
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> summary (model)
Call:
Im(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12  *xx

Girth 5.0659 0.2474 20.48 < 2e-16  *xx
Signif. codes: O “**x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ > 1

Residual standard error:
Multiple R-squared: 0.9353, Adjusted R-squared:

F-statistic: 419.4 on 1 and 29 DF, p-value:

4.252 on 29 degrees of freedom
0.9331
< 2.2e-16

>
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R?
Recall that R? is one minus the ratio of the square of the residuals over the variance in y.
Suppose we know the true coefficients, Bg and 31, for some model, what would the R? be?

R2 - 1_ SSmodel
S Stotal
- 1_ > (Wi — f(wz))z

> (yi — 9)°

B?Var|x]
B2Var[x] + o2

where f(x;) is the value of the model for input x;, g is the mean value of y, 31 is the model
coefficient for &1, o2 is the variance of the noise in the data, S§S stands for “Sum of

Squares”, and the sum is over all data points. 5@]?\]
et
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Problems with R?

2 ,B%Var[x]
~ B%Var[x] + o2

R? is not a good measure of fit, nor does it indicate that a model has predictive value. Why?
e R? can be small when the model is correct, if 37 Var|[x] is small, or o2 is large.
o R? can be large when the model is wrong, if 3% Var[x] is large.
e RZ cannot be compared across different data sets.

e R? is sometimes called the “Coefficient of Determination”, which is dumb, dumb, dumb,
as it does not explain or 'determine’ anything.

It's not clear at all of what use the R2 statistic is.

Scilet
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Simpson’s paradox

100
1

Simpson's paradox (also called the
Yule-Simpson effect) is a phenomenon in
statistics in which a trend appears in .
several different groups of data, but
disappears or reverses when these groups
are combined.

60
1

my.data$y

library(datasauRus)

40
1

sp <- simpsons_paradox

20
1

my.data <- sp[sp$dataset == ’simpson_2’,]

plot (my.data$x, my.data$y)

ml <- 1lm(y ~ x, data = my.data) f \ \ \ \

abline(m1) 20 30 40 50 60

T T
70 80
Y et
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~

Simpson’s paradox, continued

Plotting the residuals in this case will .
demonstrate plenty of structure, indicating ;
that there's something wrong with the . * .
model, or that, as in this case, the model is ol . » R
incomplete. Y A ¥
E Lo TRy %
2 .« kA e
@ o o * ‘ ‘\ . .\ .- .
> \9-'; LI > \ e
> plot(my.data$x, miSresiduals) '°‘§" X. ";’ .\. ", .
> s | oo . -...
»x 9w o m e

T T
70 80
maes SCillet
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Confounding variables

both the dependent variable and at least one other
independent variable. I \

o Failing to include, or deal with, these variables can result /
in an exaggeration or masking of the relationship .

between the independent and dependent variables.

Confounding variables are independent variables that influence .

@ Omitting confounding variables forces the model to
attribute their affects to other variables, resulting in a
“confounding” of the actual relationship between
variables.

@ This results in “omitted variable bias”.

On the right, two independent variables, 1 and x2, are correlated with both the dependent

variable, y, and each other. 521’?\]
et
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Preventing confounding-variable problems

If you have the opportunity, you can deal with potential problems with confounding variables
at the design stage of your study. These are several ways to approach this:

@ Matching: create two groups, where each member of one group has an identical
counterpart with respect to confounding variables in the other group. A 'propensity score’
is often used find matches.

@ Restriction: create similar subject groups that are the same with respect to the
confounding variable, thus the confounding variable has no effect on the dependent
variable, within that group.

@ Stratification: estimate the relationship between your dependent and independent
variables within groups with different values of confounding variables, then average the
estimates.

@ Randomization: subjects are randomly, with respect to confounding variables, assigned to
different groups. As such the average values of confounding variables should be the same

in each group. 5ﬁﬁ\let
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Confounding variables, continued

Failing to include your confounding variables in your model may cause problems.

@ The missing confounding variable can cause a bias in the estimated coefficients in your
model, especially if the two variables are negatively correlated, as the model attempts to
compensate for the missing variable.

@ The amount of bias depends on the strength of the correlation. The stronger the
correlation the stronger the bias.

@ Conversely, independent variables that have no correlation to any other independent
variables will not be biased at all. Thus the coefficient for this feature will not change as
different features are added/removed from the model.

@ If you include different combinations of independent variables in your model, and the
coefficients change significantly, you are observing “omitted variable bias”.

One of the assumptions of our linear model is that the noise is uncorrelated with the data.
Any correlations in the data will appear as some sort of structure in your residuals.
SciNet
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Multicollinearity in your data

Suppose you've included all confounding variables in your model in the hopes that the model
can deal with them. This may introduce what is called “multicollinearity” into your model.

@ This can be an issue in itself.

@ Why? Well, the independent variables should be independent. If they're correlated to
each other they're obviously not independent.

o If they're not independent, it becomes harder for the model to estimate the coefficient
associated with the independent variables, but they don’t vary independently of each
other.

@ As a result,

» coefficients become unstable depending on which variables are included in the model,
» the precision of the coefficients is reduced.

If the two variables are positively correlated you may be able to remove one of them from the
model. If they're negatively correlated you probably cannot.
SciNet

Erik Spence Generalized linear models 28 October 2025 20/31



Multicollinearity in your data, continued

So how much is multicollinearity a problem?
If the correlations between variables isn't too strong, you can probably safely ignore it.

If it is strong you should probably remove a variable, or possibly centring and scaling the data
may help.

Not surprisingly, there's a measure we can use to determine the multicollinearity of the
independent variables in our model: “variance inflation factor” (VIF).

@ VIF gives the strength of the correlation between independent variables.

@ It starts at 1, and has no upper limit.

> A value near 1 indicates weak correlation.
» A value from 1 - 5 indicates moderate correlation, but is probably harmless.
> A value greater than 5 indicates strong multicollinearity.

As you might expect, code to calculate VIF in R already exists. SdN
et
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Measuring multicollinearity

The 'car’ library contains the 'vif" function,
which calculates the multicollinearity of the
independent variables in the model.

The "ape’ library contains many
phylogenetic data sets, including data
concerning species in the order 'carnivora’.

This model is looking at the relationship
between weaning age (WA), gestation
length (GL), litter size (LS), female weight
(FW), female brain weight (FB) and birth
weight (BW).

Examining the coefficients indicates that
FB can be dropped from the model.

>

> library(ape)

> library(car)

> data(carnivora)

>

> model <- Im(WA ~ GL + LS + FW + FB + BW,
+ data = carnivora)

> vif (model)

GL LS FWw FB BW
2.267679 1.295047 8.339708 10.930205 3.182454
> >
> model2 <- 1lm(WA ~ GL + LS + FW + BW,

+ data = carnivora)
> vif (model2)

GL LS FW BW
1.752621 1.158614 2.197752 2.940201
>

Erik Spence Generalized linear models
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Other regression models

There are other types of regression models available:

Logistic (Logit) Regression: used to fit a categorical variable against a continuous
independent variable

Multinomial Logistic Regression: logistic regression where the dependent variable has
more than two outcome categories. If the multiple categories are ordered this is called
Ordinal Logistic Regression.

Generalized Linear Models: multiple independent variables, different link functions and
noise families.

Mixed effect models: regressions that deal with a “random effect” which causes different
categories to behave differently.

Cox regression: analyses factors affecting survival.

Weighted ordinary least squares.

We will examine Generalized Linear Models today, and Logistic Regression later. SdN
et
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Generalized linear models

The linear model built by Im has some built-in assumptions:

Normally distributed noise,
@ Uncorrelated noise,

@ Constant variance of the noise.

@ Data is not correlated with the noise.
@ Independent variables are independent.

There are situations where these assumptions are dramatically violated. To deal with this, let
us examine “Generalized Linear Models”. These allow
@ Non-normally distributed noise.

@ Non-constant variance.

If you find that you have structure in your residuals, it's possible that you need to use a

generalized linear model. SﬁNet
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Generalized linear models, continued

When should you use a generalized linear model?

@ You know that your data should come from a non-linear, non-polynomial distribution
(exponential, Poisson, etc).

@ You don't know what your distribution should be, and you've got structure in your
residuals.

How do generalized linear models work? Let's start with a regular linear model. Assuming the
vectors of data are (X,Y), the problem is to find the vector of coefficients 3 such that

o E(Y) = X
@ assuming that Y ~ N (X3, 02),

where E is the expectation value, N (u, a?) is the symbol for a normal distribution centred

on p with a standard deviation of o.
SciNet
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Generalized linear models, continued

As an example, for a log-linked Gaussian GLM, we have
o log (B(Y)) = X,
@ which means that E(Y) = X5,
o Y ~ N(eXB,o?).

where E is the expectation value, N (u, a?) is the symbol for a normal distribution centred
on p with a standard deviation of o.

Generalized linear models consist of 3 parts:
@ A “link"” function. A function which transforms the data such that it becomes linear.
o A linear predictor (X 3).
@ A probability distribution, which describes the type of noise to be expected in the

dependent variable.
Scifet

Erik Spence Generalized linear models 28 October 2025 26 /31



Generalized linear models, continued more

There are many possible link functions available. The most common ones are

e Identity: E(Y) = X3,

o Log: log (E(Y))=XB8 — E(Y)=eX8

e Logit: log (113;;8,)) =XB — E(Y)= H_B%XB
o Inverse: 1/E(Y)=XB8 — E(Y)=1/(XpB)

The identity link function results in a standard linear regression. By performing a generalized
linear model using this link function, with Gaussian noise, you will get the same result as using
the Im function.

Scilet
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Generalized linear models, continued even more

Once a link function has been chosen, the type of error in the data must be chosen. The
different error families have different default link functions.

Error family | Default link | Link inverse | Use for:

gaussian identity 1 Normally distributed error

poisson log exp Counts

binomial logit 1/(1 + e~ ®) | Proportions or binary data

gamma inverse 1/x Continuous data with non-constant error

> glm(formula, family = binomial(link = log))

Erik Spence Generalized linear models 28 October 2025
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GLM example

Consider the Cars93 data set. g "
Plotting the MPG in the city, versus
Weight, suggests a non-linear relationship. %7 .
z 8
> é °
< o o
> library (MASS) z 8- .
g o o
N g oo
© o
> plot(Cars93%Weight, Cars93$MPG.city) & = e en o
g 4 o oo %00 wo
o T
T T T T T
2000 2500 3000 3500 4000
Cars93$Weight
Scifet
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GLM example, continued

Let's perform a GLM, using Gaussian noise
and the log link function. .

45

40

sorted.weights <- sort(Cars93$Weight)

35

glml <- glm(MPG.city ~ Weight,
data = Cars93,

Cars93$MPG.city
30
|

family = gaussian(link = "log"))

25

lines(sorted.weights,
predict(glml,

15
|

data.frame(Weight = sorted.weights),

type = "response")) 2000 2500 3000 3500 4000
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>
> plot(Cars93$Weight, Cars93$MPG.city)
>
+
+
+
>

Cars93$Weight




Summary

We've started looking at the quality of our linear models. Things to remember:

@ Plot the residuals! There is important information in there!

>

>
>
>

make sure you get a snow storm!

make sure there is no structure, and no clumps, in your residuals.

make sure the spread in the data is constant, and not increasing or decreasing.
make sure the histogram of the residuals is Gaussian.

@ Be aware of confounding variables. Watch out for multicollinearity!

@ If the data are not polynomial, or the residuals are not normally distributed, you may need
to use a Generalized Linear Model.

@ You will likely need to play around with the different noise families and link functions to
find one that best works with your data.

@ Other types of regression include logistic regression, for fitting categories, and
multinomial regression, for multiple dependent variables.
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