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Today'’s slides

Today's slides can be found here. Go to the "Introduction to Computational BioStatistics with
R" page, under Lectures, " Linear models”.

https://scinet.courses/1391
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Today’s class

Today we will continue our adventures in data analysis.

Initial data exploration.
Linear models.
Formulae.

Quadratic models.

Fits with categorical independent variables.

As always, ask questions.
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Look at your data

65 70 75 80 85

The very first step to dealing with your <
data is to plot it. Always always always! A
Girth . L
The "pairs’ function will do the same as e e
demonstrated here. . : -
> g . .
> str(trees) ed & Height <
’data.frame’: 31 obs. of 3 variables: e e :
$Girth : num 8.3 8.6 8.8 10.5 10.7 ...
$Height: num 70 65 63 72 81 ...
$Volume: num 10.3 10.3 10.2 16.4 18.8 ... -
> - '
> plot(trees) L o Volume Lo
> N . oo e
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Look at your data, continued

Once you've had a first look, you might
want to take a closer look at a particular ® 1
pair of variables.

60
1

>

50
1

> plot(trees$Girth, trees$Volume)
>

40

trees$Volume

Looks like they might be related.

10
|

T T T T T T T
8 10 12 14 16 18 20

trees$Girth ]
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Correlation and covariance

If we suspect that two variables might be related to one another, it's worth our time to look at
the correlation and covariance of the variables.

Covariance:
oxy = E[(X — E(X)) (Y — E(Y))]

Correlation (Pearson’s correlation):

E[(X - E(X)) (Y - E(Y))]

OXO0Yy

PXY =

Recall that the standard deviation:

ox =[P [@ - B@)?]

Where E is the expectation value of the quantity in question.
Scifet
23 October 2025 6/31



Correlation and covariance,

The "cor” function will produce the
correlation from the previous slide.

The "var” function returns the variance or
the covariance, depending on the number
of arguments.

Recall that the standard deviation is the
square root of the variance.

continued

>

> cor(trees$Girth, trees$Volume)
[1] 0.9671194

>

> var (trees$Girth, trees$Volume)
[1] 49.88812

>

> var(trees$Girth)
[1] 9.847914

>

> sd(trees$Girth)
[1] 3.138139

>
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Model fitting

One important application of statistics is the fitting of models to empirical data. There are
many ways to do this, but they are all based on the same principles:

@ collect some data.
@ propose a relationship between the 'features’, and the 'target’ in your data (if there is a
'target’).
» 'features’ are the independent variables in your data (x),
» the 'target’ is the dependent variable (y). Not all data sets have dependent variables.

o Fit your model to the data,
@ Test and evaluate the quality of the model.

Depending on the field, this is called modelling, fitting, regression.
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Linear models

Let's consider the simplest possible case, that the relationship between the independent and
dependent variables is linear.

y:ﬁ0+ﬁlw1++ﬁn$n+6

As usual: @ (3p is the intercept,
@ y is the dependent variable, ® B1,..., By are the coefficients, and
® Zi,..., Ty are the independent variables, @ & is noise.

For example, we might assume a relationship for plant growth:

growth ~ water 4+ temp + fertilizer...

The plant growth is linearly related to the temperature, amount of fertilizer and water, etc.
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Fitting a linear model

We use the "Im"” function to fit a linear >
model to our data. > model <- 1lm(trees$Volume ~ trees$Girth)
>
The weird thing with the ~ ("tilde”) is > model
called a "formula”. Call:
Im(formula = trees$Volume ~ trees$Girth)
Formulae are used, in R, to describe the
functional relationship between variables Coefficients: ]
hen buildi del (Intercept) trees$Girth
when building models. -36.943 5.066
>
Volume =~ -36.943 + (5.066 x Girth).
Scifet
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Fitting a linear model, continued

The Im function returns an object
of class 'Im’.

This is essentially just a very-deep
named list.

If we so desire, we can now use
the model to calculate the
model’s prediction for a new tree,
with a girth of, say, 15.12.

@ Use the 'predict’ function.

@ Use the coefficients directly.
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>

> model <- Im(Volume ~ Girth, data = trees)

>

> predict(model, newdata = data.frame(Girth = 15.12))

1
39.65229

>

> coef (model)
(Intercept)

-36.943459

Girth
5.065856

>

> coef (model) [1] + coef(model)[2] * 15.12
(Intercept)
39.65229

>

23 October 2025
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Using formulae, an aside

Formulae show up all over the place in R.
There are two ways of building a formula:

model <- 1lm(trees$Volume ~ trees$Girth)

@ Use vectors of data as the arguments
to the formula.

model <- 1m(Volume ~ Girth, data = trees)

model2 <- 1m(Volume ~ Girth + Height,
data = trees)

@ Specify the names of the columns of a
data frame, and then pass the data
frame as an argument to the function.

@ The entry to the left of the tilde is the
dependent variable.

V|+ V|V]|V]|V]|V |V

The second option, specifying column
names, is unfortunate due to its syntax
@ All the entries to the right of the tilde being inconsistent with the rest of R, but it
are the independent variables (there is the one more commonly used. It's also
can be more than one). somewhat more flexible for making
Scilet
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Using formulae, an aside, continued

There are a few other ways to
specify a formula.

@ A formula can be assigned
to a variable, and used later.

@ To specify "all columns
which have not yet been
mentioned” use the "."”

@ To remove an
already-specified feature, use
the minus sign.

@ You can also mix data frame
columns and non-column
vectors.
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> f <- Volume ~ .

> class(f)
[1] "formula"

>

> trees.model <- 1m(f, data = trees)

>

> library(boot)

> model <- lm(ulcer ~ - sex - year, data = melanoma)

>

> model

Call:

Im(formula = ulcer ~ - sex - year, data = melanoma)

Coefficients:

(Intercept) time status age thickness
6.146e-01 -5.595e-05 -1.417e-01 4.210e-04 6.045e-02
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Using formulae, an aside,

By default, R will automatically give
you an intercept in your model.

On rare occasion, you may want to
just have the intercept, and nothing
else. To do this use a "1’ character.

Note that you must put in a '1". No
other constant works.

Erik Spence Linear models

constant values

model <- 1m(Volume ~ 1, data = trees)

>
>
>
> model

Call:

1m(formula = Volume ~ 1, data = trees)
Coefficients:

(Intercept)
30.17

>

> model <- 1m(Volume ~ 2, data = trees)
Error in terms.formula(formula, data = data)

invalid model formula in ExtractVars

>

23 October 2025
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Using formulae, an aside, interaction terms

Some people like to specify
interaction terms in their models.
These are terms where features are
multiplied together as a combined
independent variable.

If you specify “A * B” in a formula
you will get “A + B + A:B", where

“A:B"” is the interaction term.

If you want just the interaction term,

> model <- 1m(Volume ~ Girth * Height, data = trees)
>
> model
Call:
Im(formula = Volume ~ Girth * Height, data = trees)
Coefficients:

(Intercept) Girth Height Girth:Height

69.3963 -5.8558 -1.2971

0.1

347

>

> model <- 1m(Volume ~ Girth:Height, data =

trees)

> model
Call:

Im(formula = Volume ~ Girth:Height, data = t

rees)

put just “A:B" in the formula. Coefficients:
(Intercept) Girth:Height
-25.24170 0.05449
>
S LK ] e
@ 1% [\ [S)
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Calculating confidence intervals, an aside

Suppose that you've calculated the mean, &, of some
quantity. What is the uncertainty on that quantity?

To answer this question, we estimate the Standard Error

2
SE (z)? = -
n

where s2 = 3 (z; — )% / (n — 1). The 95%
confidence interval, in which there is a 95% chance the
true mean of the population lies, is given by

p £ 1.96 SE(x)

This is because 1.96 standard deviations is approximately
what contains 95% of the normal distribution.
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>

> x <- trees$Girth

>

> my.mean <- mean(x)

>

> se2 <- var(x) / length(x)

>

> my.mean - 1.96 * sqrt(se2)
[1] 12.14368

>

> my.mean + 1.96 * sqrt(se2)
[1] 14.35309

>
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Calculating confidence intervals, an aside, continued

We can also use the Standard Errors to perform hypothesis tests on the coefficients of our
linear model.

@ The Null Hypothesis is that the coefficients in our linear model have a value of zero,
meaning that the dependent variable does not depend on the independent variable.

@ To test this we need to determine whether our estimate of the coefficient is sufficiently far
from zero to reject the Null Hypothesis. How far is far enough?

@ We can check in the usual way, by calculating a t-statistic

Bj —0
tj= 2
SE(B;)
@ This estimates the number of standard deviations that 3; is away from zero.

@ The question then becomes: what is the probability of getting a t statistic of value |t|, or

larger? This is your p value.
Scillet
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Calculating confidence intervals, an aside, more

Given our t statistic (for a Null Hypothesis
of zero):

Bj —0

Y = sE())
we need only determine the probability of
getting |t| or greater. To determine this we
use a 't' distribution, which is very close to
the Gaussian CDF for n > 30. The second
argument is the number of degrees of
freedom. The factor of 2 is because it
could be left or right tailed.

The p value is small. The probability of
committing a Type | error is quite low.

coefs <- coef (summary(trees.model))

est <- coefs["Height", "Estimate"]

std.err <- coefs["Height", "Std. Error"]

my.t <- (est - 0) / std.err

VIiVIVI|V]|V |V |V]|V |V

my.t
[1] 2.606594

>

> 2 % (1 - pt(my.t, length(x) - 3))
[1] 0.01449097

>
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Fitting a linear model, continued more

Important details about
the model can be found in
the summary:

@ The "t value” is the
estimate divided by
the standard error.

@ The p-value is the
probability of
achieving a value of t,
or larger, under the
Null Hypothesis
(estimate = 0).
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> model <- 1m(Volume ~ Girth + Height, data = trees)

> summary (model)
Call:
Im(formula = Volume ~ Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -57.9877 8.6382 -6.713  2.75e-07  *%¥x%
Girth 4.7082 0.2643 17.816 < 2e-16  ®k*
Height 0.3393 0.1302 2.607 0.0145  =*
Signif. codes: 0 ‘**%’ 0.001 ‘x*> 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
a1 = sAVi t
A — 1 B A
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Fitting a linear model, continued even more

What about that
F-statistic at the bottom?

@ The fit also gives an
analysis of the null
hypothesis that 871 =

B2 =...= B, =0.
@ This means that
there's no

dependence on the
independent variables
at all.

@ This null hypothesis
can be rejected in

> model <- 1m(Volume ~ Girth + Height, data = trees)

> summary (model)
Call:

Im(formula = Volume Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max
-6.4065 -2.6493 -0.2876 2.2003  8.4847
Coefficients:
Estimate Std. Error t value Pr(>[tl])
(Intercept) -57.9877 8.6382 -6.713  2.75e-07  *%¥x%
Girth 4.7082 0.2643 17.816 < 2e-16 *okk
Height 0.3393 0.1302 2.607 0.0145
Signif. codes: 0 ‘**%’ 0.001 ‘x*’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ °

Residual standard error: 3.882 on 28 degrees of freedom

1

. Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
this case. F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
a1 = sAVi t
A — 1 B A
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Fitting a linear model, continued some more

There are some assumptions built into "Im". You need to know the fine print:
@ The noise in the data, §, is normally distributed about the true value (bivariate normality).
@ Homoscedasticity: the variance in the noise is constant throughout the data.
@ The data is not correlated to the noise.

@ The independent variables are independent of each other.

If these conditions are not met your model is not necessarily on a good statistical foundation.
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Erik Spence Linear models 23 October 2025 21/31



Fitting a linear model, continued even more

It's always good to visualize your
model once it's been made. o

>

> model <- 1m(Volume ~ Girth,
+ data = trees)

>

60
|

> plot(trees$Girth, trees$Volume)

> abline(model)
>

trees$Volume

40

30
|

Not bad, but could be better.

20
|

8 10 12 14 16 18

T
20
trees$Girth M et
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Fitting a quadratic model

We can increase the order of the polynomial
which we are fitting to the data.

Girth2 <- trees$Girth*x2

model2 <- 1lm(Volume ~ Girth + Girth2,
data = trees)

plot(trees$Girth, trees$Volume)

abline(model)

xx <- seq(min(trees$Girth), max(trees$Girth),
len = 100)

yy <- predict(model2, data.frame(Girth = xx,
Girth2 = xx*%2))

>
>
>
+
>
>
>
>
>
+
>
+
>
>

lines(xx, yy, lwd = 2, col = "red")

trees$Volume

trees$Girth
The "abline” command only works
with linear fits.
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Fitting a quadratic model using curve

The curve function is also a useful option.

Girth2 <- trees$Girth*x2

60

model2 <- 1m(Volume ~ Girth + Girth2,
data = trees)

trees$Volume
40

plot(trees$Girth, trees$Volume)

curve (predict (model2, data.frame(Girth = x,
Girth2 = x*x2)),

20
1

from = min(trees$Girth),

10

to = max(trees$Girth), add = TRUE,
lwd = 2, col = ’red’)

>
>
>
+
>
>
> abline(model)
>
>
+
+
+
+
>

Erik Spence Linear models

14 16 18 20
trees$Girth
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Fitting a higher-order model

There are several ways to have a higher-order
fit. The best one is to use 'poly’.

modell0 <- 1m(Volume ~ poly(Girth, 10),
data = trees)

trees$Volume

plot(trees$Girth, trees$Volume)
abline(model)

p.modell0 <- predict(modellO,
data.frame(Girth = xx))

lines(xx, p.modell0, lwd = 2, col = "red")

VIV IV|+ V|VI|V |V |V]|+ V]|V

trees$Girth
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What'’s up with ’poly’?

We've seen that one way to do a non-linear fit is to use the commands

> xsq <- X * X

> model3 <- lm(y ~ x + xsq)

or it can be written as

> model3 <- Im(y ~ x + I(x**2) + I(x**3))

Unfortunately, when used this way, , £2 and a3 will be correlated with each other. This can
lead to resolution problems, especially at higher orders.

The 'poly’ function fixes this by generating at set of orthogonal polynomials evaluated at 'x'.
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Erik Spence Linear models 23 October 2025 26 /31



Linear models with binary categorical variables

What happens when you have independent variables that are not continuous? Can we make a
linear model in that case?

The simplest example of this would be the case where @7 is a binary variable, taking only two
values, say 0 or 1.

Yy~ Bo+ Bix1 + B2x2 + 6

In this simple case, R will treat 31 as an offset, like an addition to Bg, which is only used
when 1 = 1 and is ignored with ;1 = 0.
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Models with binary categorical variables, example

The leuk data set contains
survival time data for leukemia
patients.

@ whbc is white blood cell
count,

@ ag is the binary result of
an unspecified test.

The coefficient for the 'ag’
variable is given the name
"agpresent’, which is the
second of the two possible
values for that binary variable.

Erik Spence Linear models

> library(MASS)

> str(leuk)

’data.frame’: 33 obs. of 3 variables:

$wbc : int 2300 750 4300 2600 6000 10500 10000 17000 ...
$ag : Factor w/ 2 levels "absent","present":
$time: int 65 156 100 134 16 108 121 4 39 143 ...

2222 ...

>

> model <- 1lm(time wbc + ag, data = leuk)

> summary (model)

Coefficients:
Estimate Std. Error t value Pr(>[t])

(Intercept) 30.9388802 11.4082897 2.712 0.01096 *
wbc -0.0004443 0.0002006 -2.215 0.03448 *
agpresent  44.4491283 13.6299888 3.261 0.00277 **

g _an| t
(e & TITNC
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Linear models with multiclass categorical variables

What happens when your categorical variable is not binary? How is the variable treated?

In this case, our variable x7 is one of, say, 4 categories.
Yy =~ Bo + Br1T11 + Bi2x12 + B13x13 + Bra®1a + B2x2 + 6

Similar to the binary case, 311 is absorbed into the intercept, Bg. Every other value of a1
(z12, x13, T14) takes a value of either 0 or 1, indicating which category the particular data
point belongs to. The corresponding coefficients (812, B13, B14) are active in the model for
the data points in their category.

Once again, make sure that feature 7 is a factor if you do this in R.
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Models with multiclass categorical variables, example

What happens if there is more > levels(ChickWeight$Diet)
than one category for a given (1] "i" "2 "3" "4"

. . >
categorical variable?

> model <- 1lm(weight ~ Time + Diet, data = ChickWeight)

We can use the 'levels’ command > summary (model)
to find the values in a factor.
When the fit is done, Coefficients:
) Estimate Std. Error t value Pr(>Itl)
e the first value of the factor is (Intercept)  10.9244  3.3607 3.251 0.00122 **
absorbed into the intercept, Time 8.7505 0.2218 39.451 < 2e-16 *x*
Il oth | i h Diet2 16.1661 4.0858 3.957 8.56e-05 **x
@ all other values are given the Diet3 36.4994 4.0858 8.933 < 2e-16 *#x

value of either 0 or 1, Diet4 30.2335 4.1075  7.361 6.39e-13 **x
depending on whether a :
given data point is in that

level or not. Met
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Summary

We've started looking at data, and fitting it. Things to remember:

@ Plot your data!

@ The standard error can be used to estimate confidence intervals for calculated quantities.

@ Start with Im, both for linear and other polynomial fits.

@ The summary function can give both confidence intervals on coefficient values, as well as
information on the null hypothesis that the coefficient is zero.

@ Independent variables that are categorical can also be used in linear models. These take a

value of 0 or 1, depending on whether the data point is in the given category.

We will examine model fitting further next class.
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