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Today’s slides

Today’s slides can be found here. Go to the ”Introduction to Computational BioStatistics with
R” page, under Lectures, ”ANOVA”.

https://scinet.courses/1391
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Today’s class

Today we will continue our adventures with hypothesis tests.

Association tests.

ANOVA.

Power analysis.

As always, ask questions.
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A review of hypothesis testing

Recall the steps we follow to perform a hypothesis test:

Write the claim, and determine whether it is the null or alternate hypothesis.

Choose the level of significance (α).

Perform the test.

Reject or fail to reject the null hypothesis.

Write a conclusion.

We’ve already discussed determining the type of hypothesis from the claim, and the
significance level.
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Association tests
Is there any association between your variables? Are they correlated?

If your data are numeric and bivariate Gaussian:
▶ Pearson’s r (correlation)

If your data are numeric and not bivariate Gaussian (or unknown):
▶ Spearman’s (rank correlation coefficient) ρ
▶ Kendall’s (rank correlation coefficient) τ

If your data are categorical:
▶ If your data are 2 x 2:

⋆ Relative risk (risk ratio)
⋆ Odds ratio

▶ If your data are not 2 x 2:
⋆ Chi-square test for trend
⋆ Logistic regression

We will also visit some related topics when we cover linear models.

Erik Spence (SciNet HPC Consortium) ANOVA 21 October 2025 5 / 32



Bivariate Gaussian?
You asked if the data is bivariate Gaussian. What does that mean?

Two variables, X and Y , are bivariate Gaussian if

pX + qY = N(µ, σ2)

where p and q are coefficients and N(µ, σ2) is a normal distribution with mean µ and
variance σ2.

We can rewrite this in a more-familiar form:

Y = mX + b + N(0, σ2)

where m = −p/q, b = µ/q is our intercept and the Gaussian can be interpreted as noise.
The point is that the two variables have a linear relationship and have a Gaussian
noise distribution.
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Is my data bivariate Gaussian?

Suppose you want to perform an association test. The first thing you would want to check is if
it’s bivariate Gaussian.

Tests exist to determine whether a set of data is likely bivariate Gaussian. Such tests include:

Mardia’s test,

Henze-Zirkler’s test,

Royston’s test

Generalized Shapiro-Wilk.

These tests usually take the null hypothesis to be that the data IS bivariate normally
distributed. Nonetheless, always be sure to read the documentation to confirm what the null
hypothesis is. Otherwise, you won’t know what the p-value is referring to.
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Association test, example

Consider the ’cars’ data set, which gives
the speed of 1920s cars and the distance
they take to stop.

> plot(cars$speed, cars$dist)

Are the speed and distance linearly
associated?

Question 1: are the data numeric or
categorical? Numeric.

Question 2: are the data bivariate
Gaussian? Not sure, let’s find out. 5 10 15 20 25
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Testing for bivariate normality

Tests for bivariate normality are not built
into R. We will use the ’mvn’ function
which comes with the ’MVN’ package.

Our null hypothesis: the data are bivariate
normally distributed. Let us use a
Henze-Zirkler test to check.

We will use the standard significance level
of 0.05.

Result: null hypothesis rejected.

Question 2: are the data bivariate
Gaussian? No.

>

> library(MVN)

>

> result <- mvn(cars, mvnTest = ’hz’)

>

> result$multivariateNormality

Test HZ p value MVN

1 Henze-Zirkler 0.9311262 0.03545318 NO

>
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Association test, example, continued more

Data: numeric, not bivariate
Gaussian.

Association test: Spearman’s
correlation test.

Null hypothesis: there is no
association between the two data
sets.

We will use a significance level of
0.05.

Result: null hypothesis rejected!

Correlation coefficient of 0.83!

> cor.test(cars$dist, cars$speed,

+ method = ’spearman’)

Spearman’s rank correlation rho

data: cars$dist and cars$speed

S = 3532.8, p-value = 8.825e-14

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8303568

Warning message:

In cor.test.default(cars$dist, cars$speed, method =

"spearman") :

Cannot compute exact p-value with ties

>
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Pearson versus Spearman

A note about using correlation functions.

Pearson correlation:
▶ tests for a linear relationship. If the data

is correlated, but in a non-linear way,
Pearson’s won’t work correctly.

▶ strongly sensitive to outliers.
▶ data must be bivariate Gaussian.

Spearman correlation:
▶ tests for a monotonic relationship.
▶ robust to outliers.
▶ data does not need to be normally

distributed; data can be ordinal.

Kendall correlation:
▶ same assumptions as Spearman’s

correlation. Less commonly used.

>

> x <- seq(-5, 5, length = 100)

> y <- 2**x + rnorm(100)

>

> plot(x,y)

>

−4 −2 0 2 4

0
5

10
15

20
25

30

x
y

Erik Spence (SciNet HPC Consortium) ANOVA 21 October 2025 11 / 32



Pearson versus Spearman, continued
> cor.test(x, y, method = ’pearson’)

Pearson’s product-moment correlation

data: x and y

t = 13.205, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7162821 0.8612012

sample estimates:

cor

0.8001294

> cor.test(x, y, method=’spearman’)

Spearman’s rank correlation rho

data: x and y

S = 16426, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.9014341
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Analysis of variance

What is analysis of variance (ANOVA)?

ANOVA is used to examine the means of different groups in a sample.

ANOVA, in its simplest sense, generalizes the t-test to more than 2 groups.

ANOVA can be used if
▶ the data is unpaired, numeric and Gaussian (ANOVA),
▶ the data is unpaired, numeric and non-Gaussian (Kruskall-Wallis ANOVA (H test)),
▶ the data is paired, numeric and non-Gaussian (Friedman’s ANOVA).

ANOVA assumes that the group variances are equal.

ANOVA operates under the null hypothesis that all group means are the same.

If there are many groups, and the null hypothesis is rejected, further tests must be
performed to determine which groups are different from each other.

Let’s look at an example.

Erik Spence (SciNet HPC Consortium) ANOVA 21 October 2025 13 / 32



Analysis of variance, example

Suppose that 3 drugs (A, B, X) are
tested for treating ankle pain. A
study with 27 volunteers is
performed by randomly assigning 9
subjects to each drug, and then
registering pain level.

Our question: do the drugs differ at
all in their performance?

Question 1: is the data paired? No.

Question 2: is the data numeric or
categorical? Numeric.

>

> pain <- c(4, 5, 4, 3, 2, 4, 3, 4, 4, 6, 8, 4, 5,

+ 4, 6, 5, 8, 6, 6, 7, 6, 6, 7, 5, 6, 5, 4)

>

> drug <- as.factor(c(rep("A", 9), rep("B", 9),

+ rep("X", 9)))

>

> treatment <- data.frame(pain, drug)

>

Question 3: is the data Gaussian? In this case
the question is, is the data within each group
Gaussian?

Let’s find out.
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Analysis of variance, example, continued
Our null hypothesis: the data are
normally distributed. Let us use the
Shapiro-Wilk test to check.

We will use the standard significance
level of 0.05.

Result: null hypothesis not rejected!

Question 3: is the data Gaussian?
We may assume so.

> shapiro.test(pain[drug == "A"])

Shapiro-Wilk normality test

data: pain[drug == "A"]

W = 0.87282, p-value = 0.1318

> shapiro.test(pain[drug == "B"])

Shapiro-Wilk normality test

data: pain[drug == "B"]

W = 0.88654, p-value = 0.1838

> shapiro.test(pain[drug == "X"])

Shapiro-Wilk normality test

data: pain[drug == "X"]

W = 0.90348, p-value = 0.2729
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Homogeneity of variance, an aside

The ANOVA assumes that the variances of the data within groups are the same
(homoscedasticity). How is this assumption checked? Shockingly, ”there’s a test for that”:

F-test of equality of variances: tests if two normal populations have the same variance.

Hartley’s test: assumes the data are normal, and that each group has the same number of
entries.

Levene’s test: useful for data with more than one group.

Brown-Forsythe test: also used for data with more than one group.

Barlett’s test, and others.

These tests use the null hypothesis that the variances are equal.
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Analysis of variance, example, continued more

Question 4: Is the data
homoscedastic? Don’t know, let’s
find out.

Our null hypothesis: each group of
the data has the same variance. Let
us use Levene’s test to check.

We will use the standard significance
level of 0.05.

Result: null hypothesis not rejected!

>

> library(car)

>

> leveneTest(pain ~ drug, data = treatment)

Levene’s Test for Homogeneity of Variance (center =

median)
Df F value Pr(>F)

group 2 1.2353 0.3086

24

>

Question 4: is the data homoscedastic? We may
assume so.
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Analysis of variance, example, continued some more

Data: unpaired, numeric,
Gaussian, homoscedastic, 3
groups.

Test: Analysis of variance
(ANOVA).

Null hypothesis: no
significant difference
between the means of the
three groups.

We will use a significance
level of 0.05.

>

> anova.result <- aov(pain ~ drug, data = treatment)

>

> summary(anova.result)

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 26.74 13.370 10.31 0.000585 ***

Residuals 24 31.11 1.296

>

Result: the null hypothesis is rejected. There IS a
difference between these groups.

The problem now, as mentioned before, is that we don’t
know which particular groups are different from which.
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Analysis of variance, example, visual result

>

> plot(pain ~ drug, data = treatment)

>

One quick and easy way to get some
intuition as to which groups are doing what
is to just make a quick bar plot of the data.

This is not rigorous, of course, but helps
with understanding what the data is doing.
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ANOVA post hoc tests

If the p-value of a one-way ANOVA is significant we know that some of the group means are
different, but we don’t know which ones. To assess this we perform post hoc tests.

There are two tests which are usually run:

Tukey HSD test (Honest Significant Differences)

Pairwise t-tests with averaged variances.

Let’s use these to check our one-way ANOVA.
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ANOVA post hoc tests, continued

The p values of the pairwise t-test
end up accumulating ”family
error”. The p.adjust =
”bonferroni” argument indicates
which algorithm to use to try to
fix this error.

The result is a table of p-values
for the group-to-group
comparisons.

There is a statistically significant
difference between A and B and A
and X.

>

> pairwise.t.test(pain, drug, p.adjust = ’bonferroni’)

Pairwise comparisons using t tests with pooled SD

data: pain and drug

A B

B 0.0019 -

X 0.0019 1.00000
P value adjustment method: bonferroni

>

Once again, the null hypothesis is that there are no
differences between the means.
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ANOVA post hoc tests, continued more

Using the Tukey HSD test we get
similar group-to-group p-values.

Note that applying Tukey HSD,
or paired t-tests, before the
ANOVA’s null hypothesis has
been rejected increases the
possibility of incorrectly rejecting
the null hypothesis.

>

> TukeyHSD(anova.result, conf.level = 0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = pain ~ drug, data = treatment)

$drug

diff lwr upr p adj

B-A 2.111111e+00 0.770773 3.451449 0.001741

X-A 2.111111e+00 0.770773 3.451449 0.001741

X-B -8.881784e-16 -1.340338 1.340338 1.000000

>

Erik Spence (SciNet HPC Consortium) ANOVA 21 October 2025 22 / 32

~


ANOVA-like tests

There are other ANOVA-like tests out there.

Analysis of Covariance (ANCOVA): whereas ANOVA determines differences in group
means, ANCOVA determines differences in adjusted means (adjusting for a covariate, a
”confounding variable”, a third variable which may be affecting the result).

Multivariate analysis of variance (MANOVA): similar to ANOVA, but with multiple
dependent variables.

Multivariate analysis of covariance (MANCOVA): like ANCOVA, but now with multiple
dependent variables.

These tests lie outside of the test decision tree from this class, since they are either
multivariate or controlling for a third variable.
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Power analysis

The ”power” of a binary hypothesis test is the probability that the test will correctly reject the
null hypothesis when the alternative hypothesis is true. The ”statistical power” ranges from 0
to 1. As the power increases the probability of making a Type II error (beta) decreases.

power = P (reject H0 |H1 is true)

Statistical power can also be thought of as the probability of detecting a specific effect when
that effect does indeed exist.

Power analysis relates 4 quantities (if you have the other 3, you can calculate the fourth):

Sample size: n, the number of data points.

”Effect size”: h,

Significance: usually 0.05,

Statistical power: usually 0.8.
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Effect size?
Just because you’ve found a statistically significant result doesn’t mean that the result itself is
important.

For example, if you have large sample sizes, it can be easy to get a statistically significant
difference between means of populations.

Recall that statistical significance just indicates that it’s unlikely that the calculated
differences occur randomly.

But is the ”size of the result” important?

Effect size is a measure of the ”amount” H0 is false, or the ”amount” two variables are
apart from each other.

Effect size is measured in standard deviations, for continuous variables.

Effect size is an important consideration when dealing with the practical application of
statistically significant results.
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Effect size, continued

The value of effect size that we
use in our power calculation
depends upon

the type of test being run,

how big an effect we desire.

The ”cohen.ES” function can be
used to return a representative
value, based on the test and the
relative effect size.

The ”ES.h” function is also used
to calculate effect sizes for
proportion tests.

Test small medium large

tests for proportion (p) 0.2 0.5 0.8
tests for means (t) 0.2 0.5 0.8
chi-squared tests (chisq) 0.1 0.3 0.5
correlation tests (r) 0.1 0.3 0.5
ANOVA (anov) 0.1 0.25 0.4
general linear model (f2) 0.02 0.15 0.35

> library(pwr)

>

> cohen.ES(test = "r", size = "medium")

Conventional effect size from Cohen (1982)

test = r

size = medium

effect.size = 0.3

>
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Power analysis, continued

There are several R packages out there that will calculate statistical power for you. One good
one is the ”pwr” package.

The package comes with many useful functions for calculating statistical power:

pwr.t.test: one-sample, two-sample and paired t-tests.

pwr.t2n.test: two-sample t-test of unequal sample sizes.

pwr.p.test: proportion test.

pwr.anova.test: one-way ANOVA.

pwr.r.test: correlation test.

pwr.chisq.test: chi-squared test.

These functions work by leaving out the argument for the part of the calculation you are
interested in.

Erik Spence (SciNet HPC Consortium) ANOVA 21 October 2025 27 / 32



Power analysis, example
Suppose we suspect that we have an unfair coin, which lands on heads 75% of the time,
instead of the expected 50%.

We decide to run an experiment to test whether or not the coin is fair. We will flip the coin
many times, and count the number of heads.

We will then perform a one-sample proportion test to see if the proportion of heads is
significantly different from 50%.

The null hypothesis is that it is a fair coin, and that we will get a head 50% of the time. The
alternative hypothesis is that the coin is unfair, and that we will get heads more than 50% of
the time.

Problem: how many times must we flip the coin to decide that the coin is unfair?

Example stolen from https://cran.r-project.org/web/packages/pwr/vignettes/pwr-vignette.html
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Power analysis, example, continued

We will use the pwr.p.test function,
which calculates the power for a
proportion test. The test will calculate
whichever argument is not supplied to
the function.

The function takes the arguments:

n: the sample size.

h: effect size,

sig.level: significance level,

power: statistical power,

alternative: alternative hypothesis
type.

>

> coin.power <- pwr.p.test(power = 0.8,

+ h = ES.h(p1 = 0.75, p2 = 0.5),

+ sig.level = 0.05, alternative = "greater")

>

> coin.power

proportion power calculation for binomial

distribution (arcsine transformation)

h = 0.5235988

n = 22.55126

sig.level = 0.05

power = 0.8

alternative = greater

>

n = 23!
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Power analysis, example, continued more

>

> plot(coin.power)

>

The output of pwr.p.test includes the
ability to plot the power as a function of
sample size.
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Power analysis, example 2
Suppose we want to check the
differences in means between two
groups. We will use the two-sample
t-test. What is the power of the test if

there are 30 individuals in each
group,

the significance is 0.05,

we have a ”medium” effect size,

which means ”d = 0.5”.

We will use the pwr.t.test function.

> cohen.ES(test = "t", size = "medium")

Conventional effect size from Cohen (1982)

test = t

size = medium

effect.size = 0.5

>

> pwr.t.test(n = 30, d = 0.5, sig.level = 0.05)

Two-sample t test power calculation

n = 30

d = 0.5

sig.level = 0.05

power = 0.4778965

alternative = two.sided

NOTE: n is number in *each* group

>

n = 23!
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Summary

We’ve now covered many of the categories of tests which are out there.

Association tests examine whether quantities are correlated with each other.

Analysis of variance (ANOVA) is used to analyze different groups simultaneously.

If the ANOVA test is significant, post hoc tests must be performed to determine which
groups are different from which.

Power analyses are performed, without data, to determine the statistical power of a test.

Power analyses are often done during the design stage of a study, to determine how many
subjects are needed.
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