

An Introduction to Relational Databases

2

Introduction

What is a database?

In computing, a database is an organized collection of data or a
type of data store based on the use of a database management
system (DBMS).

The DBMS additionally encompasses the core facilities provided to
administer the database. The sum total of the database, the DBMS
and the associated applications can be referred to as a database
system.

3

History

The history of databases can be traced back to the early 1960s
when the need for organized data storage and retrieval became
evident with the rise of computers and their use in business and
scientific applications. Early systems used file structures and
hierarchical or network models before the introduction of the
relational model in the 1970s. Relational databases, and their
query language SQL, have become dominant, but the field
continues to evolve with the emergence of NoSQL and other
database technologies.

4

History

1960s: Early Forms and Models

File-Server Systems:
The first computerized databases were based on simple file structures, limited in their ability to
efficiently search and process information.

Hierarchical and Network Models:

Two prominent database models emerged: IBM's IMS, a hierarchical model, and CODASYL's
approach, a network model, designed to handle complex data relationships.

Apollo Mission:

The need for a centralized system to manage the vast amount of data required for the Apollo
program spurred early development in database management.

5

History

1970s: The Relational Revolution

Codd's Relational Model:
IBM's Edgar F. Codd published a paper in 1970 proposing the relational model,
which revolutionized how data was organized and queried using tables.

System R and Ingres:
Two prototype relational database systems, System R and Ingres, were developed in
the mid-1970s, laying the groundwork for future relational database systems.

1980s: Commercial Relational Databases
Oracle and DB2: The first commercial relational database systems, including Oracle
and IBM's DB2, began to appear in the early 1980s.

6

History

1990s-Present: Evolving Landscape

SQL and RDBMS Dominance:
Relational databases and their query language SQL became the dominant approach
for managing structured data.

NoSQL Rise:
As new needs emerged for managing large amounts of unstructured data, NoSQL
databases gained popularity, offering flexible data models and scalability.

Cloud and Serverless Databases:
Cloud-based and serverless database solutions continue to shape the future of
database management, offering greater scalability and ease of use.

7

History

Key Developments:

The development of direct-access storage devices (disks and drums) in the
mid-1960s allowed for interactive database access, contrasting with previous
batch processing methods .

The introduction of the CODASYL standard in 1971, based on the network
model, was a significant step in standardizing database management .

E.F. Codd's relational model, published in 1970, fundamentally changed how
people thought about organizing and managing data in databases .

The commercialization of relational database systems in the 1980s, such as
Oracle and DB2, marked a major milestone in the adoption of relational
databases .

The emergence of NoSQL databases in recent years reflects the need for
flexible and scalable solutions for handling large amounts of unstructured data .

8

Relational model
A relational model organizes data into one or more tables (or "relations") of
columns and rows, with a unique key identifying each row. Rows are also called
records or tuples. Columns are also called attributes. Generally, each
table/relation represents one "entity type" (such as customer or product). The
rows represent instances of that type of entity (such as "Lee" or "chair") and the
columns represent values attributed to that instance (such as address or price).

For example, each row of a class table corresponds
to a class, and a class corresponds to multiple
students, so the relationship between the class table
and the student table is "one to many"

9

Relational model

Keys

Each row in a table has its own unique key. Rows in a table can be linked to
rows in other tables by adding a column for the unique key of the linked row
(such columns are known as foreign keys). Codd showed that data
relationships of arbitrary complexity can be represented by a simple set of
concepts.

Part of this processing involves consistently being able to select or modify one
and only one row in a table. Therefore, most physical implementations have a
unique primary key (PK) for each row in a table. When a new row is written to
the table, a new unique value for the primary key is generated; this is the key
that the system uses primarily for accessing the table.

The primary keys within a database are used to define the relationships
among the tables. When a PK migrates to another table, it becomes a foreign
key (FK) in the other table. When each cell can contain only one value and the
PK migrates into a regular entity table, this design pattern can represent either
a one-to-one or one-to-many relationship.

10

Relational operations

Users (or programs) request data from a relational database by sending it a query. In response to a query, the database

returns a result set.

Often, data from multiple tables are combined into one, by doing a join. Conceptually, this is done by taking all possible

combinations of rows, and then filtering out everything except the answer.

There are a number of relational operations in addition to join. These include project (the process of eliminating some of

the columns), restrict (the process of eliminating some of the rows), union (a way of combining two tables with similar

structures), difference (that lists the rows in one table that are not found in the other), intersect (that lists the rows found in

both tables), and product (combines each row of one table with each row of the other).

The flexibility of relational databases allows programmers to write queries that were not anticipated by the database

designers. As a result, relational databases can be used by multiple applications in ways the original designers did not

foresee, which is especially important for databases that might be used for a long time (perhaps several decades). This has

made the idea and implementation of relational databases very popular with businesses.

11

Relational operations

SQL term Relational database term Description

Row Tuple or record A data set representing a single item

Column Attribute or field
A labeled element of a tuple, e.g.
"Address" or "Date of birth"

Table Relation or Base relvar A set of tuples sharing the same
attributes; a set of columns and rows

View or result set Derived relvar
Any set of tuples; a data report from
the RDBMS in response to a query

Terminology

The table below summarizes some of the most important relational database terms and the

corresponding SQL term:

https://en.wikipedia.org/wiki/Row_(database)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Relvar
https://en.wikipedia.org/wiki/View_(SQL)
https://en.wikipedia.org/wiki/Result_set
https://en.wikipedia.org/wiki/Query_language

12

Relational operations

Relations or tables

In a relational database, a relation is a set of tuples, or rows, that have the same attributes, or columns. A row usually

represents an object and information about that object. Objects are typically physical objects or concepts. A relation is

usually described as a table, which is organized into rows and columns. All the data referenced by an attribute are in

the same domain and conform to the same constraints.

The relational model specifies that the rows of a relation have no specific order and that the rows, in turn, impose no order

on the attributes (columns). Applications access data by specifying queries, which use operations such as select to identify

rows, project to identify attributes, and join to combine relations. Relations can be modified using the insert, delete, and

update operators. New rows can supply explicit values or be derived from a query. Similarly, queries identify rows for

updating or deleting.

Rows by definition are unique. If the row contains a candidate or primary key then obviously it is unique; however, a

primary key need not be defined for a row or record to be a row. The definition of a row requires that it be unique, but does

not require a primary key to be defined. Because a row is unique, its attributes by definition constitute a superkey.

13

Relational operations

Constraints

Constraints are often used to make it possible to further restrict the domain of an attribute. For instance, a

constraint can restrict a given integer attribute to values between 1 and 10. Constraints provide one method of

implementing business rules in the database and support subsequent data use within the application layer. SQL

implements constraint functionality in the form of check constraints. Constraints restrict the data that can be

stored in relations. These are usually defined using expressions that result in a Boolean value, indicating whether

or not the data satisfies the constraint. Constraints can apply to single attributes, to a row (restricting

combinations of attributes) or to an entire relation. Since every attribute has an associated domain, there are

constraints (domain constraints).

14

Relational operations

Primary key

Every relation/table has a primary key, this being a consequence of a relation being a set. A primary key uniquely

specifies a row within a table. While natural attributes (attributes used to describe the data being entered) are

sometimes good primary keys, surrogate keys are often used instead. A surrogate key is an artificial attribute

assigned to an object which uniquely identifies it (for instance, in a table of information about students at a school

they might all be assigned a student ID in order to differentiate them). The surrogate key has no intrinsic

(inherent) meaning, but rather is useful through its ability to uniquely identify a row. Another common occurrence,

especially in regard to N:M cardinality is the composite key. A composite key is a key made up of two or more

attributes within a table that (together) uniquely identify a record.

15

Relational operations

Foreign key

Foreign key refers to a field in a relational table that matches the primary

key column of another table. It relates the two keys. Foreign keys need

not have unique values in the referencing relation. A foreign key can be

used to cross-reference tables, and it effectively uses the values of

attributes in the referenced relation to restrict the domain of one or more

attributes in the referencing relation. The concept is described formally

as: "For all rows in the referencing relation projected over the

referencing attributes, there must exist a row in the referenced relation

projected over those same attributes such that the values in each of the

referencing attributes match the corresponding values in the referenced

attributes."

16

Relational operations

Foreign key

Foreign key refers to a field in a relational table that matches the primary

key column of another table. It relates the two keys. Foreign keys need

not have unique values in the referencing relation. A foreign key can be

used to cross-reference tables, and it effectively uses the values of

attributes in the referenced relation to restrict the domain of one or more

attributes in the referencing relation. The concept is described formally

as: "For all rows in the referencing relation projected over the

referencing attributes, there must exist a row in the referenced relation

projected over those same attributes such that the values in each of the

referencing attributes match the corresponding values in the referenced

attributes."

17

Relational operations

Index

An index is one way of providing quicker access to data. Indices can be created on any combination of attributes

on a relation. Queries that filter using those attributes can find matching rows directly using the index (similar to

Hash table lookup), without having to check each row in turn. This is analogous to using the index of a book to go

directly to the page on which the information you are looking for is found, so that you do not have to read the

entire book to find what you are looking for. Relational databases typically supply multiple indexing techniques,

each of which is optimal for some combination of data distribution, relation size, and typical access pattern.

Indices are usually implemented via B+ trees, R-trees, and bitmaps. Indices are usually not considered part of the

database, as they are considered an implementation detail, though indices are usually maintained by the same

group that maintains the other parts of the database. The use of efficient indexes on both primary and foreign

keys can dramatically improve query performance.

18

List of database engines

According to DB-Engines, in December 2024 the most popular relational satabases on the db-engines.com web site were:

● Oracle RDBMS

● MySQL/MariaDB

● Microsoft SQL Server

● PostgreSQL

● Snowflake

● IBM Db2

● SQLite

● Microsoft Access

● Databricks

● SAP Sybase

● SQLite

19

Why use Relational Databases in research computing?

● Your application relies on it.

● It tends to be more structured than using a file system.

● It is somewhat self-documenting.

● Relative easy and efficiency of individual data entry, updates and deletions, retrieval and summarization,
e.g.

Get the data from simulations in which the pressure was less than 2 MPa and the number of molecules was
less than 500.

SELECT * FROM measurement M JOIN parameter P ON M.runid=P.runid WHERE M.p<2 AND P.N<500

Even if Relational Databases don’t fit all (or any of) your data, they are a good way to start thinking about how to

organize and store data.

20

When would you not use a relational database?

● Although databases allow storage of binary data, accessing, updating, etc. can be cumbersome and heavy

on I/O operations.

● This is especially so for large binary datasets (e.g. data on a grid).

● There are better self-documenting formats for binary data (netcdf, hdf5, ...)

● When running many cases in parallel, you do not want all of them access a database simultaneously. At

best, this creates a bottleneck.

● No parallel I/O.

21

SQL

Structured Query Language (SQL) is a domain-specific language used to manage data, especially in a relational database

management system (RDBMS). It is particularly useful in handling structured data, i.e., data incorporating relations among

entities and variables.

The scope of SQL includes data query, data manipulation (insert, update, and delete), data definition (schema creation

and modification), and data access control. Although SQL is essentially a declarative language (4GL), it also includes

procedural elements.

SQL was one of the first commercial languages to use Edgar F. Codd's relational model. The model was described in his

influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks". Despite not entirely adhering to the

relational model as described by Codd, SQL became the most widely used relational database language.

SQL became a standard of the American National Standards Institute (ANSI) in 1986 and of the International Organization

for Standardization (ISO) in 1987. Since then, the standard has been revised multiple times to include a larger set of

features and incorporate common extensions. Despite the existence of standards, virtually no implementations in existence

adhere to it fully, and most SQL code requires at least some changes before being ported to different database systems.

22

SQL
Syntax

The SQL language is subdivided into several language elements, including:

● Clauses, which are constituent components of statements and queries. (In some cases, these are optional.)

● Expressions, which can produce either scalar values, or tables consisting of columns and rows of data

● Predicates, which specify conditions that can be evaluated to SQL three-valued logic (3VL) (true/false/unknown) or Boolean truth values and are used to limit the effects of
statements and queries, or to change program flow.

● Queries, which retrieve the data based on specific criteria. This is an important element of SQL.

● Statements, which may have a persistent effect on schemata and data, or may control transactions, program flow, connections, sessions, or diagnostics.

SQL statements also include the semicolon (";") statement terminator. Though not required on every platform, it is defined as a standard part of the SQL grammar.

23

SQL
Common commands

► CREATE

► DROP

► ALTER

► INSERT

► UPDATE

► SELECT

► GRANT

► REVOKE

► TRUNCATE

24

SQL
Examples:

CREATE DATABASE my_first_database;

This statement creates a new database named “my_first_database”

DROP DATABASE my_first_database;

This statement destroys a database named “my_first_database”

ALTER DATABASE my_first_database DEFAULT CHARACTER SET utf8 COLLATE utf8_unicode_ci;

This statement modifies the character set of the database

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,DROP,INDEX,ALTER ON my_first_database.* TO
myusername@'%' IDENTIFIED BY 'my_super_secret_password';

This statement grants some privileges to a user named “myusername”, actually creating the user.

GRANT ALL PRIVILEGES ON *.* TO 'root'@'%';

This statement grants ALL PRIVILEGES on all databases to the user root. This root is the root of the
database, not the root of the system

CREATE TABLE Customers (customer_id INT PRIMARY KEY AUTO_INCREMENT, first_name VARCHAR(50) NOT NULL,
last_name VARCHAR(50) NOT NULL, email VARCHAR(100) UNIQUE);

This statement creates a table named “Customers”

*Please note that these commands are MariaDB commands, but they could any other RDBMS

25

SQL
Examples:

SELECT * FROM logstore LIMIT 10;

This statement retrieves all row and columns from table “logstore” but limiting the display to the
first 10 records

SELECT * FROM messages WHERE fullmessage LIKE "niagara";

This statement retrieves the row or rows from table “messages” which column “fullmessage” contains
the string “niagara”

UPDATE users SET user_pass='PBRrMUvW7IhoWr2HvOH0JUIZl6qLHrT1' WHERE user_login='admin';

This statement modifies the password of the user “admin”

DELETE FROM users WHERE user_login='peter';

This statement deletes the row or rows which column “user_login” is equal to “peter”

REVOKE ALL PRIVILEGES ON *.* TO 'peter'@'%';

This statement revokes ALL PRIVILEGES, if he had any, on all databases to the user “peter”.

*Please note that these commands are MariaDB commands, but they could any other RDBMS

26

How to design an effective relational database
Big and small organizations alike use relational databases to store, manage, and analyze critical

information. A relational database organizes data in predefined relationships, letting you easily understand

how your data is connected.

A well-designed database provides several benefits:

● The database structure is easy to modify and maintain. Workflows rarely stay the same forever–you’ll

likely have to make some adjustments to your core relational data model in the future. Fortunately, a

well-designed database ensures that any modifications you make to fields in one table will not

adversely affect other tables.

● It’s easier to find the information that you need. With a consistent, logical database structure (that

avoids duplicate fields and tables), it’s much easier and faster to query your database.

● You can avoid redundant, duplicate, and invalid data. This data can undermine the validity of your

database, but you can design your relational database to minimize the risks posed by low-quality data.

● You can avoid situations where you are missing required data. If you can identify ahead of time which

types of data are most critical to your workflow, you can structure your database in such a way that it

enforces proper data entry, or alerts users when records are missing critical data.

27

How to design an effective relational database

Key aspects of relational database design:

● Tables: Data is organized into tables, each representing a specific entity (e.g., Customers,

Orders, Products).

● Rows: Each row in a table represents a single record or entry for that entity.

● Columns: Columns represent the attributes or fields of each record.

● Primary Key: A unique identifier for each row within a table, ensuring data uniqueness.

● Foreign Key: A column in one table that references the primary key of another table,

establishing relationships between tables.

● Relationships: Relationships between tables are defined based on how data is related (e.g.,

one-to-one, one-to-many, many-to-many).

● Normalization: A process of organizing data to reduce redundancy and improve data integrity.

28

How to design your relational database, step by step

Step 1: Define your purpose and objectives

Before beginning your database design journey, understand why you’re making it.

Are you making this database to manage transactions? To store customer IDs? To solve a specific

organizational problem? Whatever the case, it’s worth taking the time to identify the exact purpose

of the database you’ll be creating.

You may even want to work with end users to jointly write out a mission statement for your database,

like: “The purpose of the New International Museum database is to maintain the data for our art

collection,” or “Zen’s database will store all of the data for our manufacturing resource planning.”

Additionally, you should define the objectives that the end users of the database will have: which

specific tasks will the end users need to perform to accomplish their work? Develop an explicit list

of objectives—like “Know the status and location of each of the pieces of art in our collection at

all times,” or “Maintain a complete customer table that shows records for each of our clients.” This

will help you determine an appropriate structure, or database schema, for your information as you

work through this design process.

29

How to design your relational database, step by step

Step 2: Analyze data requirements

Before you design your database, you’ll need to assess how your team currently does its work, and identify

what kind of data is most important to that work.

You can do this by closely examining existing processes and by interviewing team members—both management and

end users. Some questions to ask as you conduct your research:

● How is your organization currently collecting data? Are you using spreadsheets? Paper templates?

Another database? Find the most complete samples of work that you can, and look through them to find as

many different attributes as you can. For example, your editorial calendar might currently be living in

a spreadsheet, and have columns for “Author,” “Due Date,” “Editor,” and so on.

● How are your users currently using data? Talk to end users—to identify their current data use patterns

and case studies, as well as any gaps in the current system. You can ask questions like, “What types of

data are you currently using?” and have them review the samples you collected. These interviews can

also illuminate plans for the future growth of the organization, which will give you insight into the

type of relational database model that would be the best fit.

30

How to design your relational database, step by step

Step 3: Create a list of entities and a list of attributes

The next steps are to extract a list of entities and a list of attributes from the research you’ve

compiled.

In the context of relational databases, an entity is an object, person, place, event, or idea—like

“clients,” “products,” “projects,” or “sales reps.” These entities will eventually turn into your

tables later on in the design process.

Start by picking out entities from your research and putting them in a list. For example, if you

were developing a talent database for a big record label, your entities list might look something

like this:

● Artist

● Agent

● Venue

● Gigs

31

How to design your relational database, step by step

Step 3: Create a list of entities and a list of attributes

Next, create a separate list containing the relevant attributes for each of the entities you’ve identified.
Attributes are the defining characteristics of those entities, like “name,” “quantity,” “address,” “phone
number,” or “genre.” These attributes will become the fields for your tables.

Think of entities as nouns, and attributes as the adjectives that describe those nouns. Again, for the
talent database example, your attributes list might look something like this:

● Artist Name

● Agent Name

● Agent Phone Number

● Agent Email Address

● Venue Name

● Venue Address

● Gig Dates

32

How to design your relational database, step by step

Tips:

If multiple attributes have different names but actually represent the same concept, consolidate

them into one. For example, if you have both “Product No.” and “Product Number” on your list, you

should remove one of them.

If multiple attributes have similar names but actually represent different concepts, rename the

attributes to be more specific. For example, you could rename two different “Name” attributes into

the more specific “Artist Name” and “Venue Name.”

After refining your lists, it’s a good idea to review them with users you interviewed to confirm

that you’ve accounted for every necessary type of data.

33

How to design your relational database, step by step
Step 4: Model the tables and fields

After listing your entities and attributes, use them to design the structure of your relational

database. Your list of entities will become separate tables in your base, and the list of attributes

will become the fields for these tables.

Take your lists and assign each of the attributes to your tables. For example, after we finish

assigning our listed attributes to our new tables, our talent management database-in-planning might

look something like this:

34

How to design your relational database, step by step

Next, you want to figure out how to name your records in each table. This requires that you pick an
appropriate primary field.

A primary field is a major component of ensuring data integrity, as it uniquely identifies each record
within a table and is used to establish different types of relationships between tables.

Each table’s primary field should meet the following criteria:

● It must contain unique identifiers. This will prevent you from creating duplicate records and
redundancy within a table.

● It cannot contain null values. A null value is the absence of a value, and as such, you cannot use a
null value to identify a record.

● It should not be a value that will need to be modified often. Ideally, primary field values will remain
relatively static over time and only be changed under rare circumstances.

● Ideally, it uses the table name as part of its own name. While not strictly necessary, having the table
name in the primary field name can make it easier to identify the table from which the primary field
originated. For example, “Employee Name” would be obviously identifiable as coming from the related
table, “Employees.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

