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Section 1

Version Control
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Motivation

• Have you ever worked on a file/document and:
• Saved it with a different name each time you made a change?
• Lost track of which version was the most recent?
• Realised you made a mistake and wanted to go back to a previous version?
• Collaborated with someone else and had to keep track of who made what changes?
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What is version control?

• Version control is a system that records
changes to a file or set of files over time

• It allows you to keep a history of file versions
and make them easy to track

• Essentially it takes a “snapshot” of the files
in a given moment in time

• Can you think of any examples where you
may have used/experience something
similar. . . ?
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Why use version control?

• Makes collaboration easier
• Helps you stay organised
• Allows you to keep track of changes without

keeping duplicated copies of the same file
• Allows reproducibility
• When something goes wrong, you can back

up to the last “working” copy
• It can be used for writing code, writing

papers, it is especially powerful for
text-based documents

• It is considered a must in professional
software development
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Examples

You may be familiar with the
main features of Version Control
already:

• Google Docs/Sheets/Slides
• Overleaf
• Dropbox
• Microsoft Word

These are not really Version
Control though!
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Section 2

GIT
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GIT

• Created by Linus Tovalds in 2005
• What does GIT stand for? (https://en.wikipedia.org/wiki/Git#naming)
• There are many types and approaches to version control
• GIT is just one implementation, but it has taken over as the most popular and is used all over the
world

• Other implementations include: CVS, SVN, Mercurial, etc. . .
• Some IDEs incorporate VC systems in their GUIs (e.g. Rstudio, Visual Studio, etc. . . )
• And of course, as we will discuss later, there are web-based repositories that allow you to use
VC/GIT from within a browser
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How does GIT work?

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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Example
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GIT: Terminology

• Repository: “A collection of refs together with an object database containing all objects which are
reachable from the refs.”

• Commit: “A single point in the Git history.”
• Checkout: “The action of updating all or part of the working tree with a tree object or blob from the

object database.”
• Branch: “A branch is used to develop a feature that is merged into the master branch upon

completion.”
• Conflict: “When two branches are merged and one branch overwrites changes from the other. All

conflicts need to be resolved before completing the merge”.
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GIT: Using a repository

• Step 0: Setup GIT on your computer
• Step 1: Initialise a GIT repo
• Step 2: Commit files to the repo
• Step 3: Edit/Modify/Add new or existing files
• Step 4: Commit changes
• Step 5: Push changes to remote repo
• Step 6: Repeat from Step 2
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GIT: Installation

• Install GIT on Linux:
sudo apt install git-all

• Install GIT on MacOS:
git --version

(It should prompt you to install if it doesn’t already exist)
• Install GIT on Windows by downloading packages from here: https://git-scm.com/download/win
• More information can be found here:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
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Section 3

GIT commands
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GIT: Creating a repository

• Find a location for your repo and initialise it:
laptop:~$ mkdir my-repo
laptop:~$ cd my-repo
laptop:~/my-repo$ git init
Initialized empty Git repository in /home/willis/my-repo/.git/

• This creates a .git repo in the my-repo directory, which contains the repo information:
laptop:~/my-repo$ ls -a
. .. .git

Note: The -a option for ls shows all files, which includes hidden files that start with .
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GIT: Setting your ID

• The first time you try to use git to commit something, it might complain that cannot identify you:
*** Please tell me who you are.
Run
git config --global user.email “youremail@example.com”
git config --global user.name “FirstName LastName”
To set your account’s default identity.
Omit --global to set the identity only in this repository.
fatal: empty indent name (for <(null)>) not allowed

• You can also check in advance using:
laptop:~$ git config user.name
laptop:~$ git config user.email
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GIT: Adding files to the repo

Adding files to a repository, requires two steps:
• Step 1: Add files to the staging area:

laptop:~/my-repo$ echo "some data" > datafile.dat
laptop:~/my-repo$ cp datafile.dat replicated_data.dat
laptop:~/my-repo$ ls
datafile.dat replicated_data.dat
laptop:~/my-repo$ git add datafile.dat replicated_data.dat

• Step 2: Commit files to the repo:
laptop:~/my-repo$ git commit datafile.dat replicated_data.dat -m "Adding data from
experiment X."
[master (root-commit) d67dfb5] Adding data from experiment X.
2 files changed, 2 insertions(+)
create mode 100644 datafile.dat
create mode 100644 replicated_data.dat
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GIT: Comparing file versions

• Suppose we have to update some data and we would like to compare it with the files already in the
repo:

laptop:~/my-repo$ echo "updated data" >> datafile.dat
laptop:~/my-repo$ git diff datafile.dat
diff --git a/datafile.dat b/datafile.dat
index 4268632..db1d6b5 100644
--- a/datafile.dat
+++ b/datafile.dat
@@ -1 +1,2 @@
some data
+updated data
laptop:~/my-repo$ git commit datafile.dat -m "Updating data from new experiments."
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GIT: Logs & recovering file versions
• Look at the history of the repo:

laptop:~/my-repo$ git log
commit 5afbe1a660ba831026542e2df9474213eb42237f (HEAD -> master)
Author: willis <james.willis@scinet.utoronto.ca>
Date: Wed Mar 2 14:22:09 2022 -0500

Updating data from new experiments.

commit d67dfb567d6d9d92a3a4e0aac1924ab10dda3a61
Author: willis <james.willis@scinet.utoronto.ca>
Date: Wed Mar 2 12:56:50 2022 -0500

Adding data from experiment X.

• Recover a specific version:
laptop:~/my-repo$ git checkout d67dfb56
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GIT: Removing files from repo

• Delete file:
laptop:~/my-repo$ git rm replicated_data.dat
laptop:~/my-repo$ git commit -m "Removed replicated data."
[master 8ee5a01] Removed replicated data.
1 file changed, 1 deletion(-)
delete mode 100644 replicated_data.dat

• Note: when you delete a file from the repo like this, it is also deleted from your computer. To
remove it from the repo only use the --cached option:

laptop:~/my-repo$ git rm --cached replicated_data.dat
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GIT: Reverting changes: reset, checkout & revert

Command Scope Common use cases
git reset Commit-level Discard commits in a private branch or uncommited

changes
git reset File-level Unstage a file
git checkout Commit-level Switch between branches or inspect old snapshots
git checkout File-level Discard changes in the working directory
git revert Commit-level Undo commits in a public branch
git revert File-level N/A
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GIT: Check status of files

• Check the status of files in the local repo:
laptop:~/my-repo$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: new_file.txt

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: replicated_data.dat

Untracked files:
(use "git add <file>..." to include in what will be committed)
output.log
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GIT: Full list of commands
• Get a comprehensive list of git commands with git --help:

These are common Git commands used in various situations:
start a working area (see also: git help tutorial)

clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index
sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern
log Show commit logs
...
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GIT: Aliases

• git commands can be quite long to type repeatedly. They can be shortened with aliases
• For example, to shorten git checkout to git co run:

laptop:~$ git config --global alias.co checkout

• Useful aliases:
laptop:~$ git config --global alias.br branch
laptop:~$ git config --global alias.ci commit
laptop:~$ git config --global alias.st status
laptop:~$ git config --global alias.d difftool

Note: all git configuration options can be found in your HOME directory in ~/.gitconfig
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Final comments

• It may feel like more work in the short term, but USE IT! It will save you from future headaches
• Commit often!
• Include sensible commit messages
• Do not commit derivative files e.g. log files, executables, compiled modules
• It is useful for different kinds of projects: code development, collaborations, papers etc.
• There are different version control systems: GIT, HG, SVN, CVS
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Hands-on

• Install GIT on your local machine
• sudo apt install git-all (Linux)
• git --version (MacOS - It should prompt you to install if it doesn’t already exist)

• If that fails, GIT is also installed on Niagara
• Create a local repository
• Add some files
• Experiment with different GIT commands (git --help for full list)
• Hints:

laptop:~$ git init
laptop:~$ git add file.dat
laptop:~$ git commit file.dat -m "Commit message"
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Section 4

Web-based GIT Repos
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Web-based GIT implementations

• GitHub: https://github.com
• BitBucket: https://bitbucket.org
• GitLab: https://gitlab.com
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Section 5

GitHub
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Overview

• What is GitHub and why use it?
• Integrating a local repository with GitHub
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Activities

• Create a repository in GitHub
• Push a repository from your computer to GitHub
• Pull a repository from GitHub to your computer
• Create and accept a pull request
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GitHub: Open collaboration

• Git and GitHub are not the same thing
• Hosted at github.com

• Accounts are free
• Ability to create private repositories

• Heavily used
• Collaborate
• Find code to adapt for you own projects
• Contribute to other code bases
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Terminology

• You have a local repository on your computer
• GitHub hosts remote repositories
• You can push from your local repository to a remote repository
• You can pull from a remote repository to a local repository
• You can make a pull request, in which you ask someone to pull your repository into theirs

James Willis (SciNet) GIT Version Control November 6, 2024 34 / 65

http://www.scinethpc.ca


GitHub: How to create a repo
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Push a local repo to GitHub

• Let the local repo know where to find the remote GitHub repo:
laptop:~$ cd my-repo/
laptop:~/my-repo$ git remote add origin git@github.com:username/my-repo.git

• Create the main branch and call it main:
laptop:~/my-repo$ git branch -M main
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Push a local repo to GitHub

• Push your local branch to the remote (origin) GitHub repo:
laptop:~/my-repo$ git push -u origin main
Enumerating objects: 9, done.
Counting objects: 100% (9/9), done.
Delta compression using up to 16 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (9/9), 903 bytes | 903.00 KiB/s, done.
Total 9 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
To github.com:username/my-repo.git
* [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.
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View repo on GitHub
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Pull repo from GitHub
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Pull repo from GitHub

• Pull my-repo from GitHub onto Niagara:
laptop:~$ ssh -A USERNAME@niagara.computecanada.ca
user@nia-login02:~$ git clone git@github.com:username/my-repo.git
Cloning into 'my-repo'...
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 9 (delta 1), reused 9 (delta 1), pack-reused 0
Receiving objects: 100% (9/9), done.
Resolving deltas: 100% (1/1), done.
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GitHub: Pull requests

• Pull requests are a way to merge changes from a new branch into the main branch
• They allow teams to review and either accept or reject new changes
• Powerful tool to help prevent new changes from breaking old code
• Can also run regression tests in GitHub CI (Continuous Integration)
• More info on GitHub CI here:

https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
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GitHub: Pull requests

Source: https://uoft-oss.github.io/git-workflow/
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GitHub: Create a pull request

• Create a new branch and add some changes locally:
laptop:~/my-repo$ git checkout -b new_feature
Switched to a new branch 'new_feature'
laptop:~/my-repo$ git add hello.c
laptop:~/my-repo$ git commit hello.c -m "Hello world program."
[new_feature f3a4091] Hello world program.
1 file changed, 7 insertions(+)
create mode 100644 hello.c
laptop:~/my-repo$ git commit datafile.dat -m "Fixed error."
[new_feature f2b6fe3] Fixed error.
1 file changed, 2 insertions(+), 1 deletion(-)
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GitHub: Create a pull request

• Push new branch to GitHub:
laptop:~/my-repo$ git push
Enumerating objects: 8, done.
Counting objects: 100% (8/8), done.
Delta compression using up to 16 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 703 bytes | 703.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'new_feature' on GitHub by visiting:
remote: https://github.com/username/my-repo/pull/new/new_feature
remote:
To github.com:username/my-repo.git
* [new branch] new_feature -> new_feature
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GitHub: Create a pull request
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Hands-on

• Create an account on GitHub
• Add an SSH key to your GitHub account (https://docs.github.com/en/authentication/connecting-to-

github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent)
• Create a repository on GitHub
• Push a repository from your computer to GitHub:
laptop:~/my-repo$ git remote add origin git@github.com:username/my-repo.git
laptop:~/my-repo$ git branch -M main
laptop:~/my-repo$ git push -u origin main

• Pull your repository from GitHub to your computer:
laptop:~$ git clone git@github.com:username/my-repo.git

• Create and accept a pull request
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Further information

• GitHub Skills: https://skills.github.com/

Support

Questions? Need help?

Don’t be afraid to contact us! We are here to help.
• Email to support@scinet.utoronto.ca or to niagara@computecanada.ca
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Section 6

Extra Slides
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Git Bisect: Squashing bugs

• Imagine a bug has been discovered in your codebase but you don’t know when or where
• Git provides a utility to track down which commit first introduced the bug
• git bisect performs a binary search of the commit history

• Give it a bad commit and a good commit
• It searchs all of the commits in between
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Git Bisect: Example

• Let’s use it to find a bug
• Here is a simple repo with two files: file.txt and file_2.txt containing text over multiple

commits:
laptop:~/bisect-test$ git log --oneline
f58c76c (HEAD -> master) 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit.
6b78593 2nd commit.
5c1b9ad 1st commit.

• We know the latest version of the repo contains the bug and let’s assume that the first commit
doesn’t
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Git Bisect: Example

• Now that we know a bad commit and a good commit we can begin the bisect:
laptop:~/bisect-test$ git bisect start

• Let it know about the bad and good commits:
laptop:~/bisect-test$ git bisect good 5c1b9ad
laptop:~/bisect-test$ git bisect bad f58c76c
Bisecting: 2 revisions left to test after this (roughly 1 step)
[1698376e623e4f05801c5db36f952f142764a04a] 3rd commit.

• That last command checks the code out at a previous commit halfway between the good and bad
commit
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Git Bisect: Example
• Looking at file.txt:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps
over
the
bug

we see the bug is still there
• We tell bisect that this commit is still bad:
laptop:~/bisect-test$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[6b78593f95878a124fe66bc17bece55e15924c14] 2nd commit.
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Git Bisect: Example

• It then checks the code out at another commit halfway between the latest bad commit and the good
commit

• When we look at file.txt now:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps

we see there is no bug anymore
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Git Bisect: Example

• Let bisect know and it will tell you the first commit which introduced the bug:
laptop:~/bisect-test$ git bisect good
1698376e623e4f05801c5db36f952f142764a04a is the first bad commit
commit 1698376e623e4f05801c5db36f952f142764a04a
Author: willis <james.willis@scinet.utoronto.ca>
Date: Thu Jun 8 13:25:51 2023 -0400

3rd commit.

file.txt | 3 +++
1 file changed, 3 insertions(+)

• This commit can now be analysed to see which code was edited to create the bug and a fix can be
applied
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Git Bisect: Example

• Finally exit bisect with:
laptop:~/bisect-test$ git bisect reset
Previous HEAD position was 6b78593 2nd commit.
Switched to branch 'master'
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Undoing past commits

• Now that we have found the bug we have to apply the fix to the repo
• There are multiple ways to do this:

• If your commits have been pushed to a remote repo and are public use git revert; or
• If your commits are purely local use git reset

• Let’s look at each case
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Git Revert

• git revert undoes a commit by applying the inverse of it as a new commit
• This avoids rewriting the commit history of the repo which is important to maintain integrity and

reliable collaboration
• Let’s use it to fix our bug
• Remember the bug was first introduced in the 3rd commit:
1698376e623e4f05801c5db36f952f142764a04a is the first bad commit
commit 1698376e623e4f05801c5db36f952f142764a04a
Author: willis <james.willis@scinet.utoronto.ca>
Date: Thu Jun 8 13:25:51 2023 -0400

3rd commit.

file.txt | 3 +++
1 file changed, 3 insertions(+)
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Git Revert

• We need to give git revert the commit we wish to undo:
laptop:~/bisect-test$ git revert 1698376
Auto-merging file.txt
CONFLICT (content): Merge conflict in file.txt
error: could not revert 1698376... 3rd commit.
hint: after resolving the conflicts, mark the corrected paths
hint: with 'git add <paths>' or 'git rm <paths>'
hint: and commit the result with 'git commit'

• However, this has caused what is known as a CONFLICT
• Git has undone the changes of the commit to file.txt but that file has been changed in
subsequent commits (4th, 5th and 6th)
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Git Revert

• file.txt now looks like this:
The
quick
brown
fox
jumps
<<<<<<< HEAD
over
the
bug
lazy
dog.
=======
>>>>>>> parent of 1698376... 3rd commit.
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Git Revert

• We edit the file to remove the bug and any lines starting with <<</>>>/===
• Then let git know that the CONFLICT has been resolved and to continue with the revert:
laptop:~/bisect-test$ git add file.txt
laptop:~/bisect-test$ git revert --continue
[master eb03ecb] Revert "3rd commit." and fix bug.
1 file changed, 1 deletion(-)

• The git revert --continue command will open a new window where you can edit the commit
message

• Save and close the file and the revert will be complete
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Git Revert

• Now looking at the git log:
laptop:~/bisect-test$ git log --oneline
eb03ecb (HEAD -> master) Revert "3rd commit." and fix bug.
f58c76c 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit.
6b78593 2nd commit.
5c1b9ad 1st commit.

• We see that we have retained the commit history and the bug fix has been applied!
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Git Reset

• git reset undoes changes by rolling the repo back to a specific commit
• However, it does this by rewriting the commit history
• All commits and changes after that specified commit will be deleted
• So be very careful with this command
• Also, if after a git reset you try to push those changes to a public repo that contains the commit

you removed it will fail
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Git Reset

• Let’s look at an example:
laptop:~/bisect-test$ git log --oneline
eb03ecb (HEAD -> master) Revert "3rd commit." and fix bug.
f58c76c 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit. << Bug found
6b78593 2nd commit.
5c1b9ad 1st commit.

• We shall reset to the commit before the bug was introduced:
laptop:~/bisect-test$ git reset --hard 6b78593
HEAD is now at 6b78593 2nd commit.
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Git Reset

• Let’s look at the contents of file.txt:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps

• And the git log:
laptop:~/bisect-test$ git log --oneline
6b78593 (HEAD -> master) 2nd commit.
5c1b9ad 1st commit.
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Hands-on

• Experiment with:
• git bisect
• git revert
• git reset

• Try and revert a previous commit
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