
GIT Version Control

James Willis (SciNet)

November 6, 2024

James Willis (SciNet) GIT Version Control November 6, 2024 1 / 65

Outline

• Why use version control?
• About GIT version control
• GIT commands

• Hands-on

• Web-based GIT Repos
• GitHub

• Hands-on

James Willis (SciNet) GIT Version Control November 6, 2024 2 / 65

http://www.scinethpc.ca

Section 1

Version Control

James Willis (SciNet) GIT Version Control November 6, 2024 3 / 65

Motivation

• Have you ever worked on a file/document and:
• Saved it with a different name each time you made a change?
• Lost track of which version was the most recent?
• Realised you made a mistake and wanted to go back to a previous version?
• Collaborated with someone else and had to keep track of who made what changes?

James Willis (SciNet) GIT Version Control November 6, 2024 4 / 65

http://www.scinethpc.ca

What is version control?

• Version control is a system that records
changes to a file or set of files over time

• It allows you to keep a history of file versions
and make them easy to track

• Essentially it takes a “snapshot” of the files
in a given moment in time

• Can you think of any examples where you
may have used/experience something
similar. . . ?

James Willis (SciNet) GIT Version Control November 6, 2024 5 / 65

http://www.scinethpc.ca

Why use version control?

• Makes collaboration easier
• Helps you stay organised
• Allows you to keep track of changes without

keeping duplicated copies of the same file
• Allows reproducibility
• When something goes wrong, you can back

up to the last “working” copy
• It can be used for writing code, writing

papers, it is especially powerful for
text-based documents

• It is considered a must in professional
software development

James Willis (SciNet) GIT Version Control November 6, 2024 6 / 65

http://www.scinethpc.ca

Examples

You may be familiar with the
main features of Version Control
already:

• Google Docs/Sheets/Slides
• Overleaf
• Dropbox
• Microsoft Word

These are not really Version
Control though!

James Willis (SciNet) GIT Version Control November 6, 2024 7 / 65

http://www.scinethpc.ca

Section 2

GIT

James Willis (SciNet) GIT Version Control November 6, 2024 8 / 65

GIT

• Created by Linus Tovalds in 2005
• What does GIT stand for? (https://en.wikipedia.org/wiki/Git#naming)
• There are many types and approaches to version control
• GIT is just one implementation, but it has taken over as the most popular and is used all over the
world

• Other implementations include: CVS, SVN, Mercurial, etc. . .
• Some IDEs incorporate VC systems in their GUIs (e.g. Rstudio, Visual Studio, etc. . .)
• And of course, as we will discuss later, there are web-based repositories that allow you to use
VC/GIT from within a browser

James Willis (SciNet) GIT Version Control November 6, 2024 9 / 65

http://www.scinethpc.ca
https://en.wikipedia.org/wiki/Git#naming

How does GIT work?

. . .

. . .

. . .

. . .

. . .

. . .

. . .

James Willis (SciNet) GIT Version Control November 6, 2024 10 / 65

http://www.scinethpc.ca

Example

James Willis (SciNet) GIT Version Control November 6, 2024 11 / 65

http://www.scinethpc.ca

GIT: Terminology

• Repository: “A collection of refs together with an object database containing all objects which are
reachable from the refs.”

• Commit: “A single point in the Git history.”
• Checkout: “The action of updating all or part of the working tree with a tree object or blob from the

object database.”
• Branch: “A branch is used to develop a feature that is merged into the master branch upon

completion.”
• Conflict: “When two branches are merged and one branch overwrites changes from the other. All

conflicts need to be resolved before completing the merge”.

James Willis (SciNet) GIT Version Control November 6, 2024 12 / 65

http://www.scinethpc.ca

GIT: Using a repository

• Step 0: Setup GIT on your computer
• Step 1: Initialise a GIT repo
• Step 2: Commit files to the repo
• Step 3: Edit/Modify/Add new or existing files
• Step 4: Commit changes
• Step 5: Push changes to remote repo
• Step 6: Repeat from Step 2

James Willis (SciNet) GIT Version Control November 6, 2024 13 / 65

http://www.scinethpc.ca

GIT: Installation

• Install GIT on Linux:
sudo apt install git-all

• Install GIT on MacOS:
git --version

(It should prompt you to install if it doesn’t already exist)
• Install GIT on Windows by downloading packages from here: https://git-scm.com/download/win
• More information can be found here:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

James Willis (SciNet) GIT Version Control November 6, 2024 14 / 65

http://www.scinethpc.ca
https://git-scm.com/download/win
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Section 3

GIT commands

James Willis (SciNet) GIT Version Control November 6, 2024 15 / 65

GIT: Creating a repository

• Find a location for your repo and initialise it:
laptop:~$ mkdir my-repo
laptop:~$ cd my-repo
laptop:~/my-repo$ git init
Initialized empty Git repository in /home/willis/my-repo/.git/

• This creates a .git repo in the my-repo directory, which contains the repo information:
laptop:~/my-repo$ ls -a
. .. .git

Note: The -a option for ls shows all files, which includes hidden files that start with .

James Willis (SciNet) GIT Version Control November 6, 2024 16 / 65

http://www.scinethpc.ca

GIT: Setting your ID

• The first time you try to use git to commit something, it might complain that cannot identify you:
*** Please tell me who you are.
Run
git config --global user.email “youremail@example.com”
git config --global user.name “FirstName LastName”
To set your account’s default identity.
Omit --global to set the identity only in this repository.
fatal: empty indent name (for <(null)>) not allowed

• You can also check in advance using:
laptop:~$ git config user.name
laptop:~$ git config user.email

James Willis (SciNet) GIT Version Control November 6, 2024 17 / 65

http://www.scinethpc.ca

GIT: Adding files to the repo

Adding files to a repository, requires two steps:
• Step 1: Add files to the staging area:

laptop:~/my-repo$ echo "some data" > datafile.dat
laptop:~/my-repo$ cp datafile.dat replicated_data.dat
laptop:~/my-repo$ ls
datafile.dat replicated_data.dat
laptop:~/my-repo$ git add datafile.dat replicated_data.dat

• Step 2: Commit files to the repo:
laptop:~/my-repo$ git commit datafile.dat replicated_data.dat -m "Adding data from
experiment X."
[master (root-commit) d67dfb5] Adding data from experiment X.
2 files changed, 2 insertions(+)
create mode 100644 datafile.dat
create mode 100644 replicated_data.dat

James Willis (SciNet) GIT Version Control November 6, 2024 18 / 65

http://www.scinethpc.ca

GIT: Comparing file versions

• Suppose we have to update some data and we would like to compare it with the files already in the
repo:

laptop:~/my-repo$ echo "updated data" >> datafile.dat
laptop:~/my-repo$ git diff datafile.dat
diff --git a/datafile.dat b/datafile.dat
index 4268632..db1d6b5 100644
--- a/datafile.dat
+++ b/datafile.dat
@@ -1 +1,2 @@
some data
+updated data
laptop:~/my-repo$ git commit datafile.dat -m "Updating data from new experiments."

James Willis (SciNet) GIT Version Control November 6, 2024 19 / 65

http://www.scinethpc.ca

GIT: Logs & recovering file versions
• Look at the history of the repo:

laptop:~/my-repo$ git log
commit 5afbe1a660ba831026542e2df9474213eb42237f (HEAD -> master)
Author: willis <james.willis@scinet.utoronto.ca>
Date: Wed Mar 2 14:22:09 2022 -0500

Updating data from new experiments.

commit d67dfb567d6d9d92a3a4e0aac1924ab10dda3a61
Author: willis <james.willis@scinet.utoronto.ca>
Date: Wed Mar 2 12:56:50 2022 -0500

Adding data from experiment X.

• Recover a specific version:
laptop:~/my-repo$ git checkout d67dfb56

James Willis (SciNet) GIT Version Control November 6, 2024 20 / 65

http://www.scinethpc.ca

GIT: Removing files from repo

• Delete file:
laptop:~/my-repo$ git rm replicated_data.dat
laptop:~/my-repo$ git commit -m "Removed replicated data."
[master 8ee5a01] Removed replicated data.
1 file changed, 1 deletion(-)
delete mode 100644 replicated_data.dat

• Note: when you delete a file from the repo like this, it is also deleted from your computer. To
remove it from the repo only use the --cached option:

laptop:~/my-repo$ git rm --cached replicated_data.dat

James Willis (SciNet) GIT Version Control November 6, 2024 21 / 65

http://www.scinethpc.ca

GIT: Reverting changes: reset, checkout & revert

Command Scope Common use cases
git reset Commit-level Discard commits in a private branch or uncommited

changes
git reset File-level Unstage a file
git checkout Commit-level Switch between branches or inspect old snapshots
git checkout File-level Discard changes in the working directory
git revert Commit-level Undo commits in a public branch
git revert File-level N/A

James Willis (SciNet) GIT Version Control November 6, 2024 22 / 65

http://www.scinethpc.ca

GIT: Check status of files

• Check the status of files in the local repo:
laptop:~/my-repo$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: new_file.txt

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: replicated_data.dat

Untracked files:
(use "git add <file>..." to include in what will be committed)
output.log

James Willis (SciNet) GIT Version Control November 6, 2024 23 / 65

http://www.scinethpc.ca

GIT: Full list of commands
• Get a comprehensive list of git commands with git --help:

These are common Git commands used in various situations:
start a working area (see also: git help tutorial)

clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index
sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern
log Show commit logs
...

James Willis (SciNet) GIT Version Control November 6, 2024 24 / 65

http://www.scinethpc.ca

GIT: Aliases

• git commands can be quite long to type repeatedly. They can be shortened with aliases
• For example, to shorten git checkout to git co run:

laptop:~$ git config --global alias.co checkout

• Useful aliases:
laptop:~$ git config --global alias.br branch
laptop:~$ git config --global alias.ci commit
laptop:~$ git config --global alias.st status
laptop:~$ git config --global alias.d difftool

Note: all git configuration options can be found in your HOME directory in ~/.gitconfig

James Willis (SciNet) GIT Version Control November 6, 2024 25 / 65

http://www.scinethpc.ca

Final comments

• It may feel like more work in the short term, but USE IT! It will save you from future headaches
• Commit often!
• Include sensible commit messages
• Do not commit derivative files e.g. log files, executables, compiled modules
• It is useful for different kinds of projects: code development, collaborations, papers etc.
• There are different version control systems: GIT, HG, SVN, CVS

James Willis (SciNet) GIT Version Control November 6, 2024 26 / 65

http://www.scinethpc.ca

Hands-on

• Install GIT on your local machine
• sudo apt install git-all (Linux)
• git --version (MacOS - It should prompt you to install if it doesn’t already exist)

• If that fails, GIT is also installed on Niagara
• Create a local repository
• Add some files
• Experiment with different GIT commands (git --help for full list)
• Hints:

laptop:~$ git init
laptop:~$ git add file.dat
laptop:~$ git commit file.dat -m "Commit message"

James Willis (SciNet) GIT Version Control November 6, 2024 27 / 65

http://www.scinethpc.ca

Section 4

Web-based GIT Repos

James Willis (SciNet) GIT Version Control November 6, 2024 28 / 65

Web-based GIT implementations

• GitHub: https://github.com
• BitBucket: https://bitbucket.org
• GitLab: https://gitlab.com

James Willis (SciNet) GIT Version Control November 6, 2024 29 / 65

http://www.scinethpc.ca
https://github.com
https://bitbucket.org
https://gitlab.com

Section 5

GitHub

James Willis (SciNet) GIT Version Control November 6, 2024 30 / 65

Overview

• What is GitHub and why use it?
• Integrating a local repository with GitHub

James Willis (SciNet) GIT Version Control November 6, 2024 31 / 65

http://www.scinethpc.ca

Activities

• Create a repository in GitHub
• Push a repository from your computer to GitHub
• Pull a repository from GitHub to your computer
• Create and accept a pull request

James Willis (SciNet) GIT Version Control November 6, 2024 32 / 65

http://www.scinethpc.ca

GitHub: Open collaboration

• Git and GitHub are not the same thing
• Hosted at github.com

• Accounts are free
• Ability to create private repositories

• Heavily used
• Collaborate
• Find code to adapt for you own projects
• Contribute to other code bases

James Willis (SciNet) GIT Version Control November 6, 2024 33 / 65

http://www.scinethpc.ca

Terminology

• You have a local repository on your computer
• GitHub hosts remote repositories
• You can push from your local repository to a remote repository
• You can pull from a remote repository to a local repository
• You can make a pull request, in which you ask someone to pull your repository into theirs

James Willis (SciNet) GIT Version Control November 6, 2024 34 / 65

http://www.scinethpc.ca

GitHub: How to create a repo

James Willis (SciNet) GIT Version Control November 6, 2024 35 / 65

http://www.scinethpc.ca

Push a local repo to GitHub

• Let the local repo know where to find the remote GitHub repo:
laptop:~$ cd my-repo/
laptop:~/my-repo$ git remote add origin git@github.com:username/my-repo.git

• Create the main branch and call it main:
laptop:~/my-repo$ git branch -M main

James Willis (SciNet) GIT Version Control November 6, 2024 36 / 65

http://www.scinethpc.ca

Push a local repo to GitHub

• Push your local branch to the remote (origin) GitHub repo:
laptop:~/my-repo$ git push -u origin main
Enumerating objects: 9, done.
Counting objects: 100% (9/9), done.
Delta compression using up to 16 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (9/9), 903 bytes | 903.00 KiB/s, done.
Total 9 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
To github.com:username/my-repo.git
* [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.

James Willis (SciNet) GIT Version Control November 6, 2024 37 / 65

http://www.scinethpc.ca

View repo on GitHub

James Willis (SciNet) GIT Version Control November 6, 2024 38 / 65

http://www.scinethpc.ca

Pull repo from GitHub

James Willis (SciNet) GIT Version Control November 6, 2024 39 / 65

http://www.scinethpc.ca

Pull repo from GitHub

• Pull my-repo from GitHub onto Niagara:
laptop:~$ ssh -A USERNAME@niagara.computecanada.ca
user@nia-login02:~$ git clone git@github.com:username/my-repo.git
Cloning into 'my-repo'...
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 9 (delta 1), reused 9 (delta 1), pack-reused 0
Receiving objects: 100% (9/9), done.
Resolving deltas: 100% (1/1), done.

James Willis (SciNet) GIT Version Control November 6, 2024 40 / 65

http://www.scinethpc.ca

GitHub: Pull requests

• Pull requests are a way to merge changes from a new branch into the main branch
• They allow teams to review and either accept or reject new changes
• Powerful tool to help prevent new changes from breaking old code
• Can also run regression tests in GitHub CI (Continuous Integration)
• More info on GitHub CI here:

https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration

James Willis (SciNet) GIT Version Control November 6, 2024 41 / 65

http://www.scinethpc.ca
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration

GitHub: Pull requests

Source: https://uoft-oss.github.io/git-workflow/

James Willis (SciNet) GIT Version Control November 6, 2024 42 / 65

http://www.scinethpc.ca
https://uoft-oss.github.io/git-workflow/

GitHub: Create a pull request

• Create a new branch and add some changes locally:
laptop:~/my-repo$ git checkout -b new_feature
Switched to a new branch 'new_feature'
laptop:~/my-repo$ git add hello.c
laptop:~/my-repo$ git commit hello.c -m "Hello world program."
[new_feature f3a4091] Hello world program.
1 file changed, 7 insertions(+)
create mode 100644 hello.c
laptop:~/my-repo$ git commit datafile.dat -m "Fixed error."
[new_feature f2b6fe3] Fixed error.
1 file changed, 2 insertions(+), 1 deletion(-)

James Willis (SciNet) GIT Version Control November 6, 2024 43 / 65

http://www.scinethpc.ca

GitHub: Create a pull request

• Push new branch to GitHub:
laptop:~/my-repo$ git push
Enumerating objects: 8, done.
Counting objects: 100% (8/8), done.
Delta compression using up to 16 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 703 bytes | 703.00 KiB/s, done.
Total 6 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'new_feature' on GitHub by visiting:
remote: https://github.com/username/my-repo/pull/new/new_feature
remote:
To github.com:username/my-repo.git
* [new branch] new_feature -> new_feature

James Willis (SciNet) GIT Version Control November 6, 2024 44 / 65

http://www.scinethpc.ca

GitHub: Create a pull request

James Willis (SciNet) GIT Version Control November 6, 2024 45 / 65

http://www.scinethpc.ca

Hands-on

• Create an account on GitHub
• Add an SSH key to your GitHub account (https://docs.github.com/en/authentication/connecting-to-

github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent)
• Create a repository on GitHub
• Push a repository from your computer to GitHub:
laptop:~/my-repo$ git remote add origin git@github.com:username/my-repo.git
laptop:~/my-repo$ git branch -M main
laptop:~/my-repo$ git push -u origin main

• Pull your repository from GitHub to your computer:
laptop:~$ git clone git@github.com:username/my-repo.git

• Create and accept a pull request

James Willis (SciNet) GIT Version Control November 6, 2024 46 / 65

http://www.scinethpc.ca
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Further information

• GitHub Skills: https://skills.github.com/

Support

Questions? Need help?

Don’t be afraid to contact us! We are here to help.
• Email to support@scinet.utoronto.ca or to niagara@computecanada.ca

James Willis (SciNet) GIT Version Control November 6, 2024 47 / 65

http://www.scinethpc.ca
https://skills.github.com/

Section 6

Extra Slides

James Willis (SciNet) GIT Version Control November 6, 2024 48 / 65

Git Bisect: Squashing bugs

• Imagine a bug has been discovered in your codebase but you don’t know when or where
• Git provides a utility to track down which commit first introduced the bug
• git bisect performs a binary search of the commit history

• Give it a bad commit and a good commit
• It searchs all of the commits in between

James Willis (SciNet) GIT Version Control November 6, 2024 49 / 65

http://www.scinethpc.ca

Git Bisect: Example

• Let’s use it to find a bug
• Here is a simple repo with two files: file.txt and file_2.txt containing text over multiple

commits:
laptop:~/bisect-test$ git log --oneline
f58c76c (HEAD -> master) 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit.
6b78593 2nd commit.
5c1b9ad 1st commit.

• We know the latest version of the repo contains the bug and let’s assume that the first commit
doesn’t

James Willis (SciNet) GIT Version Control November 6, 2024 50 / 65

http://www.scinethpc.ca

Git Bisect: Example

• Now that we know a bad commit and a good commit we can begin the bisect:
laptop:~/bisect-test$ git bisect start

• Let it know about the bad and good commits:
laptop:~/bisect-test$ git bisect good 5c1b9ad
laptop:~/bisect-test$ git bisect bad f58c76c
Bisecting: 2 revisions left to test after this (roughly 1 step)
[1698376e623e4f05801c5db36f952f142764a04a] 3rd commit.

• That last command checks the code out at a previous commit halfway between the good and bad
commit

James Willis (SciNet) GIT Version Control November 6, 2024 51 / 65

http://www.scinethpc.ca

Git Bisect: Example
• Looking at file.txt:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps
over
the
bug

we see the bug is still there
• We tell bisect that this commit is still bad:
laptop:~/bisect-test$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[6b78593f95878a124fe66bc17bece55e15924c14] 2nd commit.

James Willis (SciNet) GIT Version Control November 6, 2024 52 / 65

http://www.scinethpc.ca

Git Bisect: Example

• It then checks the code out at another commit halfway between the latest bad commit and the good
commit

• When we look at file.txt now:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps

we see there is no bug anymore

James Willis (SciNet) GIT Version Control November 6, 2024 53 / 65

http://www.scinethpc.ca

Git Bisect: Example

• Let bisect know and it will tell you the first commit which introduced the bug:
laptop:~/bisect-test$ git bisect good
1698376e623e4f05801c5db36f952f142764a04a is the first bad commit
commit 1698376e623e4f05801c5db36f952f142764a04a
Author: willis <james.willis@scinet.utoronto.ca>
Date: Thu Jun 8 13:25:51 2023 -0400

3rd commit.

file.txt | 3 +++
1 file changed, 3 insertions(+)

• This commit can now be analysed to see which code was edited to create the bug and a fix can be
applied

James Willis (SciNet) GIT Version Control November 6, 2024 54 / 65

http://www.scinethpc.ca

Git Bisect: Example

• Finally exit bisect with:
laptop:~/bisect-test$ git bisect reset
Previous HEAD position was 6b78593 2nd commit.
Switched to branch 'master'

James Willis (SciNet) GIT Version Control November 6, 2024 55 / 65

http://www.scinethpc.ca

Undoing past commits

• Now that we have found the bug we have to apply the fix to the repo
• There are multiple ways to do this:

• If your commits have been pushed to a remote repo and are public use git revert; or
• If your commits are purely local use git reset

• Let’s look at each case

James Willis (SciNet) GIT Version Control November 6, 2024 56 / 65

http://www.scinethpc.ca

Git Revert

• git revert undoes a commit by applying the inverse of it as a new commit
• This avoids rewriting the commit history of the repo which is important to maintain integrity and

reliable collaboration
• Let’s use it to fix our bug
• Remember the bug was first introduced in the 3rd commit:
1698376e623e4f05801c5db36f952f142764a04a is the first bad commit
commit 1698376e623e4f05801c5db36f952f142764a04a
Author: willis <james.willis@scinet.utoronto.ca>
Date: Thu Jun 8 13:25:51 2023 -0400

3rd commit.

file.txt | 3 +++
1 file changed, 3 insertions(+)

James Willis (SciNet) GIT Version Control November 6, 2024 57 / 65

http://www.scinethpc.ca

Git Revert

• We need to give git revert the commit we wish to undo:
laptop:~/bisect-test$ git revert 1698376
Auto-merging file.txt
CONFLICT (content): Merge conflict in file.txt
error: could not revert 1698376... 3rd commit.
hint: after resolving the conflicts, mark the corrected paths
hint: with 'git add <paths>' or 'git rm <paths>'
hint: and commit the result with 'git commit'

• However, this has caused what is known as a CONFLICT
• Git has undone the changes of the commit to file.txt but that file has been changed in
subsequent commits (4th, 5th and 6th)

James Willis (SciNet) GIT Version Control November 6, 2024 58 / 65

http://www.scinethpc.ca

Git Revert

• file.txt now looks like this:
The
quick
brown
fox
jumps
<<<<<<< HEAD
over
the
bug
lazy
dog.
=======
>>>>>>> parent of 1698376... 3rd commit.

James Willis (SciNet) GIT Version Control November 6, 2024 59 / 65

http://www.scinethpc.ca

Git Revert

• We edit the file to remove the bug and any lines starting with <<</>>>/===
• Then let git know that the CONFLICT has been resolved and to continue with the revert:
laptop:~/bisect-test$ git add file.txt
laptop:~/bisect-test$ git revert --continue
[master eb03ecb] Revert "3rd commit." and fix bug.
1 file changed, 1 deletion(-)

• The git revert --continue command will open a new window where you can edit the commit
message

• Save and close the file and the revert will be complete

James Willis (SciNet) GIT Version Control November 6, 2024 60 / 65

http://www.scinethpc.ca

Git Revert

• Now looking at the git log:
laptop:~/bisect-test$ git log --oneline
eb03ecb (HEAD -> master) Revert "3rd commit." and fix bug.
f58c76c 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit.
6b78593 2nd commit.
5c1b9ad 1st commit.

• We see that we have retained the commit history and the bug fix has been applied!

James Willis (SciNet) GIT Version Control November 6, 2024 61 / 65

http://www.scinethpc.ca

Git Reset

• git reset undoes changes by rolling the repo back to a specific commit
• However, it does this by rewriting the commit history
• All commits and changes after that specified commit will be deleted
• So be very careful with this command
• Also, if after a git reset you try to push those changes to a public repo that contains the commit

you removed it will fail

James Willis (SciNet) GIT Version Control November 6, 2024 62 / 65

http://www.scinethpc.ca

Git Reset

• Let’s look at an example:
laptop:~/bisect-test$ git log --oneline
eb03ecb (HEAD -> master) Revert "3rd commit." and fix bug.
f58c76c 6th commit.
2395b1a 5th commit.
a2923e9 4th commit.
1698376 3rd commit. << Bug found
6b78593 2nd commit.
5c1b9ad 1st commit.

• We shall reset to the commit before the bug was introduced:
laptop:~/bisect-test$ git reset --hard 6b78593
HEAD is now at 6b78593 2nd commit.

James Willis (SciNet) GIT Version Control November 6, 2024 63 / 65

http://www.scinethpc.ca

Git Reset

• Let’s look at the contents of file.txt:
laptop:~/bisect-test$ cat file.txt
The
quick
brown
fox
jumps

• And the git log:
laptop:~/bisect-test$ git log --oneline
6b78593 (HEAD -> master) 2nd commit.
5c1b9ad 1st commit.

James Willis (SciNet) GIT Version Control November 6, 2024 64 / 65

http://www.scinethpc.ca

Hands-on

• Experiment with:
• git bisect
• git revert
• git reset

• Try and revert a previous commit

James Willis (SciNet) GIT Version Control November 6, 2024 65 / 65

http://www.scinethpc.ca

