
Mastering HPC

Jaime Pinto James Willis

October 28, 2024

Jaime Pinto, James Willis Mastering HPC October 28, 2024 1 /53



Outline

Motivation

Introduction

Identifying your Application

Code Compilation

Interactive Sessions

Performance Tuning

Batch Submission

▶ Script Examples

Checkpointing

Job Monitoring

Debugging

Hands-on

Jaime Pinto, James Willis Mastering HPC October 28, 2024 2 /53



Motivation

High Performance Computing (HPC) resources are expensive to run and maintain

Utilising as much of the resources as possible is very important

Running jobs on HPC resources can be complex and there are many ways to do it

This course will help you to use HPC resources more efficiently

This course is a result of repeated users’ tickets of all levels of expertise

Observing these steps will help you achieve your goals quicker

Jaime Pinto, James Willis Mastering HPC October 28, 2024 3 /53



Introduction

When running any program or application on Niagara, you need to make sure you are using
the resources efficiently

This means ensuring that:

▶ As many cores on a node are running as close to a 100% load for as long as possible
▶ Your problem will fit in the available amount of memory on a node
▶ Your job will finish in the time you have requested or will be able to checkpoint and restart
▶ You are performing IO correctly and not overloading the file system

We will now go through a set of recommendations to best help you achieve this

Jaime Pinto, James Willis Mastering HPC October 28, 2024 4 /53



Identifying your Application

Jaime Pinto, James Willis Mastering HPC October 28, 2024 5 /53



Identifying your Application
Before you start running your jobs on Niagara, you need to identify the type of application
you have. This will help you determine the best way to run your job

Some questions you should ask yourself are:

▶ Is your code single-threaded or multi-threaded?
▶ Is your code multi-node (i.e. MPI) or strictly serial?
▶ Is your code a hybrid of both? (e.g. MPI + OpenMP)
▶ Are you developing your own code or using 3rd party code?
▶ Is your code containerized?
▶ Are you using commercial code?
▶ Is your code suitable to run on Linux?
▶ Can your code run from the command line?

Once you have identified the type of application you have, you can start to develop a plan
to run your job

Jaime Pinto, James Willis Mastering HPC October 28, 2024 6 /53



Definition and Terminology

In the context of Slurm and HPC, the definitions of CPUs, cores, threads, sockets, and tasks
are:

▶ Node: A single computational machine
▶ Socket: A physical socket on a motherboard that accepts a CPU part
▶ Core: A physical CPU core that can execute instructions independently
▶ Thread: A logical software unit that can run on a single core
▶ CPU: Depending on the system configuration, this can be either a core or a thread
▶ Task: An instance of an executed command

Slurm uses the terms “core” and “CPU” interchangeably depending on the context and
command. For example, the –cpus-per-task option specifies the number of cores per task.

Jaime Pinto, James Willis Mastering HPC October 28, 2024 7 /53



Serial Applications

Run on a single core on a single node
If ran unmodified, they will only utilise 2.5% of the CPU wasting 39/40 cores on a node
Multiple independent jobs can be bundled together on a single node to maximise CPU usage
For more details please see:
[https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara]
(https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara)

Jaime Pinto, James Willis Mastering HPC October 28, 2024 8 /53



Multi-threaded Applications

Run on a single node using OpenMP or equivalent
Can run on multiple cores on a single node utilising shared memory
OMP_NUM_THREADS environment variable is used to set the number of threads

Jaime Pinto, James Willis Mastering HPC October 28, 2024 9 /53



Multi-node Applications

Run on multiple nodes using MPI
Each node has its own memory and communicates with other nodes over the network
MPI libraries are used to manage the communication between nodes
The problem is divided into smaller parts and each part is run on a separate node

Jaime Pinto, James Willis Mastering HPC October 28, 2024 10 /53



Containerized Applications

Containerized applications are created using a software deployment process called
containerization, which bundles an application’s code with its required files and libraries.
They run in isolated packages of code called containers.
Containers include all the dependencies that an application might need to run on any host
operating system, such as libraries, binaries, configuration files, and frameworks, into a
single lightweight executable.
On the Alliance systems the preferend method of containerization is via Apptainer:
https://docs.alliancecan.ca/wiki/Apptainer
Note that singularity has been deprecated in favor of Apptainer
Docker files can be converted to Apptainer:
https://docs.alliancecan.ca/wiki/Apptainer#Creating_an_Apptainer_container_from_a_Dockerfile

Jaime Pinto, James Willis Mastering HPC October 28, 2024 11 /53

https://docs.alliancecan.ca/wiki/Apptainer


Hybrid Applications

Runs on multiple nodes using MPI + OpenMP
MPI manages communication between nodes
OpenMP performs the computations in shared memory within a node

Jaime Pinto, James Willis Mastering HPC October 28, 2024 12 /53



Commercial Code

Commercial code is only available if you have a license

Even with a license, additional setup may be required to run on Niagara (e.g. ssh tunnel to
external license server)

Here are some commercial codes that some users have been able to run on Niagara:

▶ ANSYS
▶ COMSOL
▶ VASP

Jaime Pinto, James Willis Mastering HPC October 28, 2024 13 /53



Code Compilation

Jaime Pinto, James Willis Mastering HPC October 28, 2024 14 /53



Code Compilation 1
Before you can run your code on Niagara, you need to compile it

You should always compile your code on the login nodes as they have internet access and
are the same architecture as the compute nodes

Depending on the software you are using, you may need to load a set of modules to gain
access to right compilers and libraries

There are two software stacks available on Niagara: NiaEnv (Default) and CCEnv

They can be switched using the module load command. For example to load the latest
NiaEnv and CCEnv stacks use:

module load NiaEnv/2022a

module load CCEnv StdEnv/2023

Jaime Pinto, James Willis Mastering HPC October 28, 2024 15 /53



Code Compilation 2

The code you require may be available as a module on Niagara already
To check if a specific module is present, you can run: module spider <module_name>
Find what software dependencies your code has and load the appropriate modules
(e.g. documentation, README, etc.)

Jaime Pinto, James Willis Mastering HPC October 28, 2024 16 /53



Code Compilation 3
For example, to see what OpenMPI libraries are available, you can run: module spider
openmpi:

user@nia-login03:~$ ml spider openmpi

-----------------------------------------------------------------------------
openmpi:

-----------------------------------------------------------------------------
Description:
An open source Message Passing Interface implementation

Versions:
openmpi/4.1.2+ucx-1.11.2
openmpi/4.1.4+ucx-1.11.2
openmpi/5.0.2+ucx-1.15.0

Jaime Pinto, James Willis Mastering HPC October 28, 2024 17 /53



Code Compilation 4
Then to see what dependencies a specific version has run: module spider
openmpi/5.0.2+ucx-1.15.0:

user@nia-login03:~$ module spider openmpi/5.0.2+ucx-1.15.0

-----------------------------------------------------------------------------
openmpi: openmpi/5.0.2+ucx-1.15.0

-----------------------------------------------------------------------------
Description:
An open source Message Passing Interface implementation

You will need to load all module(s) on any one of the lines below before
the "openmpi/5.0.2+ucx-1.15.0" module is available to load.

gcc/11.3.0

Jaime Pinto, James Willis Mastering HPC October 28, 2024 18 /53



Code Compilation 5

Finally, to load the module, you can run:

module load gcc/11.3.0 openmpi/5.0.2+ucx-1.15.0

Once you have loaded the correct modules, you can compile your code using the
appropriate compiler

You are now ready to run the executable on the login nodes

Jaime Pinto, James Willis Mastering HPC October 28, 2024 19 /53



Preliminary Checks

You should make sure your executable runs on a login node

Start by running your executable on 1 core, then 2 cores, and finally 4 cores

Ensuring it doesn’t fail and runs for no more than 15 minutes as the login nodes are shared
resources

PLEASE, REFRAIN FROM SUBMITTING A JOB FOR THE FIRST TIME ASKING ALREADY FOR THE
MAX NUMBER OF NODES AND THE MAX AMOUNT OF TIME, IF YOU ARE NOT REASONABLY
SURE IT WILL WORK, OR YOU WILL BE WASTING A LOT OF RESOURCES.

These are only preliminary checks and not production runs

Jaime Pinto, James Willis Mastering HPC October 28, 2024 20 /53



Interactive Sessions

Jaime Pinto, James Willis Mastering HPC October 28, 2024 21 /53



Interactive Session 1

Once you have confirmed your executable runs on the login nodes, the next step is to run
on a node that you can scale up to 40 cores

Also ensure that you have no dependency on internet access:

▶ For your code
▶ Datasets
▶ Software licenses

If your code needs external data then you have to break the execution into 2 steps:

1 Download the data from a login node first (if small amounts) or the datamovers
(nia-dm1/nia-dm2)

2 Then run the code offline on the debug/compute nodes

Jaime Pinto, James Willis Mastering HPC October 28, 2024 22 /53



Interactive Session 2
We recommend that you request an interactive session on the debug queue (at a higher
priority)

This will allow you to run your job on a single node for up to 40 cores and up to 1 hour on a
dedicated node

You can request an interactive session using the debugjob or salloc command:

debugjob 1

or

salloc --time=1:00:00 -N 1 --account=def-user -p debug

In principle, any request you would submit with a script to the scheduler you could request
on an interactive job with salloc as well

Jaime Pinto, James Willis Mastering HPC October 28, 2024 23 /53



Interactive Session 3

There are more details on interactive jobs here:

▶ https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart#Testing_and_Debugging
▶ https://docs.alliancecan.ca/wiki/Running_jobs#Interactive_jobs
▶ https://slurm.schedmd.com/salloc.html

You can now try and scale up your job to use all 40 cores on the node

Making sure you don’t run out of memory or encounter any other single node issues

Pay close attention to any error messages or notifications in the standard output

Fix any bugs detected at this stage, if any

Jaime Pinto, James Willis Mastering HPC October 28, 2024 24 /53

https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart#Testing_and_Debugging
https://docs.alliancecan.ca/wiki/Running_jobs#Interactive_jobs
https://slurm.schedmd.com/salloc.html


Multiple Nodes (if it applies to you)

Once you have confirmed your job runs on a single node, you can request an interactive
session on the debug queue for two nodes (debugjob 2)

This will give you an interactive session on two nodes for up to 30 minutes

Start adjusting your scripts to run over multiple nodes

Jaime Pinto, James Willis Mastering HPC October 28, 2024 25 /53



Batch Submission

Jaime Pinto, James Willis Mastering HPC October 28, 2024 26 /53



Batch Submission 1

Now that your job has shown it can run on multiple nodes in an interactive session, you can
focus on the submission script itself using batch mode

Make sure you are submitting your jobs from a path under $SCRATCH, this will be known as
your working directory

Keep all your scripts, executables, input files, and output files in this directory. This helps
support staff in case you need assistance

By default SLURM will generate output and error files into your working directory unless you
specify otherwise. Do not modify the default location until your workflow is fully developed

Jaime Pinto, James Willis Mastering HPC October 28, 2024 27 /53



Batch Submission 2

Submit your job to the debug queue for one node for 15 minutes using the sbatch
command:

sbatch -N 1 --time=0:15:00 submit.sh -p debug

If that runs successfully, submit your job to the debug queue for two nodes for 30 minutes:

sbatch -N 2 --time=0:30:00 submit.sh -p debug

Pay close attention to any error messages or notifications in the output logs. As a general
rule, there are always hints and/or suggestions in the log files. Sometimes the error
message may appear in the middle of the log, so please read the whole log.

Jaime Pinto, James Willis Mastering HPC October 28, 2024 28 /53



Batch Submission 3

Login to the compute node (headnode) from another shell to check what is going on via ssh:
▶ Check which nodes your job is running on using squeue --me or sq command
▶ Then login to the node using ssh <node_name>
▶ Try running the htop command to monitor CPU and memory usage
▶ Track memory utilisation with free -g

htop is a useful tool for monitoring CPU and memory usage on a node

htop demonstration (time permitting)

If your job fails and you need to debug it further, you can run always revert to running the
script interactively with bash submit.sh from an interactive session

Jaime Pinto, James Willis Mastering HPC October 28, 2024 29 /53



Batch Submission 4
You should be confident now that your application scales efficiently up to 2 nodes at least

From this point on, and only then, submit your jobs to the normal batch queue (sbatch
submit.sh)

Start with one hour at first on two nodes only, then proceed to two hours and ten nodes
etc. Scale up gradually and verify that your code’s performance doesn’t degrade or decay
with larger numbers of nodes

PLEASE, REFRAIN FROM SUBMITTING A JOB FOR THE FIRST TIME ASKING ALREADY FOR THE
MAX NUMBER OF NODES AND THE MAX AMOUNT OF TIME, IF YOU ARE NOT REASONABLY
SURE IT WILL WORK, OR YOU WILL BE WASTING A LOT OF RESOURCES.

We will now go through some templates of how to run different types of jobs

Jaime Pinto, James Willis Mastering HPC October 28, 2024 30 /53



Serial Applications
This can be achieved using GNU Parallel, for example:

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=40
#SBATCH --time=12:00:00
#SBATCH --job-name gnu-parallel-example

# Turn off implicit threading in Python, R
export OMP_NUM_THREADS=1
module load NiaEnv/2019b gnu-parallel

parallel -j $SLURM_TASKS_PER_NODE <<EOF
cd serialjobdir01 && ./doserialjob01 && echo "job 01 finished"
cd serialjobdir02 && ./doserialjob02 && echo "job 02 finished"
...
cd serialjobdir80 && ./doserialjob80 && echo "job 80 finished"

EOF
Jaime Pinto, James Willis Mastering HPC October 28, 2024 31 /53



Multi-threaded Applications
Example SLURM submission script:

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --cpus-per-task=40
#SBATCH --time=1:00:00
#SBATCH --job-name openmp_job
#SBATCH --output=openmp_output_%j.txt
#SBATCH --mail-type=FAIL

module load NiaEnv/2022a
module load intel/2022u2

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./openmp_example
# or "srun ./openmp_example".

Jaime Pinto, James Willis Mastering HPC October 28, 2024 32 /53



Multi-node Applications
Example SLURM submission script:

#!/bin/bash
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=40
#SBATCH --time=1:00:00
#SBATCH --job-name mpi_job
#SBATCH --output=mpi_output_%j.txt
#SBATCH --mail-type=FAIL

module load NiaEnv/2022a
module load intel/2022u2
module load intelmpi/2022u2+ucx-1.11.2

mpirun ./mpi_example
# or "srun ./mpi_example"

Jaime Pinto, James Willis Mastering HPC October 28, 2024 33 /53



Hybrid Applications
Example SLURM submission script:

#!/bin/bash
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=10
#SBATCH --cpus-per-task=4
#SBATCH --time=1:00:00
#SBATCH --job-name hybrid_test

module load NiaEnv/2022a
module load intel/2022u2
module load intelmpi/2022u2+ucx-1.11.2

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun ./hybrid_example

Jaime Pinto, James Willis Mastering HPC October 28, 2024 34 /53



Performance Tuning

Jaime Pinto, James Willis Mastering HPC October 28, 2024 35 /53



Performance tuning for the
watchmaker

If you suspect that your code is not running optimally, you can try experimenting with
different module stacks, compilers etc.

For example try the CCEnv stack instead of NiaEnv or vice versa

Potentially try hyperthreading:

▶ Niagara has 2-way hyperthreading enabled on its Intel CPUs, so each core has two threads
▶ You can run up to 80 threads on a single node
▶ Some applications see a small performance increase of 5-10%
▶ Your application may benefit from hyperthreading, but not always
▶ So please experiment and see what works best for your application
▶ Please see:
https://docs.scinet.utoronto.ca/index.php/Slurm#Hyperthreading:_Logical_CPUs_vs._cores

Jaime Pinto, James Willis Mastering HPC October 28, 2024 36 /53

https://docs.scinet.utoronto.ca/index.php/Slurm#Hyperthreading:_Logical_CPUs_vs._cores


Checkpointing

Jaime Pinto, James Willis Mastering HPC October 28, 2024 37 /53



Checkpointing 1

Checkpointing is the process of saving the state of your application at regular intervals

It is a useful technique to add to your workflow in case of disruptions to the execution,
i.e. power outages, hardware failures, etc.

This allows you to restart your application from the last checkpoint in case of a failure,
saving you time, lost progress and wasted compute resources

Niagara limits jobs to a maximum wallclock time of 24 hours, so checkpointing is also useful
if your job runs for longer than this

Jaime Pinto, James Willis Mastering HPC October 28, 2024 38 /53



Checkpointing 2
Checkpointing is achieved by:

▶ Writing the entire state of your application to the file system
▶ Performed every X time steps or every Y minutes so as not to overload the file system or
impact the performance of your application

▶ Then subsequently reading the state back in when you restart your application from the
checkpoint file

▶ Checkpointing instructions have to be given and executed prior to the requested time has
elapsed. You don’t want your job to timeout before it has a chance to checkpoint

You should checkpoint your application at regular intervals to avoid losing too much work in
case of a failure

You can find more information on checkpointing here:

▶ https://docs.scinet.utoronto.ca/index.php/Checkpoints

Jaime Pinto, James Willis Mastering HPC October 28, 2024 39 /53

https://docs.scinet.utoronto.ca/index.php/Checkpoints


Job Monitoring

Jaime Pinto, James Willis Mastering HPC October 28, 2024 40 /53



Job Monitoring 1
An important resource to help you keep track of your jobs and see how efficiently they are
running is the my.scinet portal: https://my.scinet.utoronto.ca

You can login to the my.scinet portal using the same credentials you use to login to CCDB

Features:

Niagara CPU and storage utilisation
Status of the login nodes
History of your jobs on Niagara and Mist
Per job:

▶ Job script
▶ Job environment
▶ CPU and memory usage updated every 10 minutes
▶ GFLOPS and disk IO rates updated every 10 minutes
▶ Lots of other useful metrics

Jaime Pinto, James Willis Mastering HPC October 28, 2024 41 /53

https://my.scinet.utoronto.ca/


Job Monitoring 2

my.scinet demonstration (time permitting)

There is also the recently created Alliance Portal, which complements the my.scinet portal
very well: https://portal.alliancecan.ca

The portal focuses on what resources are being used, when and by whom

Alliance Portal demonstration (time permitting)

For real time monitoring logging into the compute nodes and running htop is a good way to
see what is going on

To get a quick snapshot of the performance of a running job there is also the jobperf
<job_id> command

Jaime Pinto, James Willis Mastering HPC October 28, 2024 42 /53

https://portal.alliancecan.ca/


Job Monitoring 3

This will give an overview of the performance of your job, i.e. CPU and memory usage

user@nia-login06:~$ jobperf 13753632
---------------------------------------------------------------------------------

RUNNING USER MEMORY(MB)
HOSTNAME #THD CPUUSE %MEM NAME USED AVAIL PROCESS NAMES
---------------------------------------------------------------------------------
nia0001 40 97% 44.4% willis2 107889 85178 mpirun 2*srun 40*xhpl
nia0002 40 98% 43.4% willis2 103190 89863 40*xhpl
---------------------------------------------------------------------------------

Jaime Pinto, James Willis Mastering HPC October 28, 2024 43 /53



Job Arrays
Job arrays are a way to submit multiple jobs with a single submission script

This is useful if you have a large number of jobs that are similar and can be run
independently

However, you should NOT use them to run serial jobs on Niagara

If you have a set of jobs that you know scale well to at least one node, then you can use job
arrays to submit them all at once

Note that a job array is like a knife that cuts both ways: if your jobs are not efficient they will
consume/waste the allocation of your group very quickly

You can find more information on job arrays here:
https://docs.alliancecan.ca/wiki/Job_arrays/en

Jaime Pinto, James Willis Mastering HPC October 28, 2024 44 /53

https://docs.alliancecan.ca/wiki/Job_arrays/en


mpirun vs srun vs mpiexec

Use mpirun if it doesn’t work use srun and if that doesn’t work use mpiexec

Jaime Pinto, James Willis Mastering HPC October 28, 2024 45 /53



Debugging

Jaime Pinto, James Willis Mastering HPC October 28, 2024 46 /53



Debugging Errors
If your job fails, you can check the output file for any error messages

You can also check the SLURM logs for more information on why your job failed

SLURM output and error files can be renamed with the --output and --error options in
your SLURM script

Give your log files meaningful names, for example:

#SBATCH --job-name=gromacs
#SBATCH --output=%x_%j.out
#SBATCH --error=%x_%j.err

This will create files like gromacs_12345.out and gromacs_12345.err for job ID 12345,
where %x is the job name and %j is the job ID

Jaime Pinto, James Willis Mastering HPC October 28, 2024 47 /53



Debugging Errors

If you fail to identify the error from the log files, you will need to look at using a debugger

There are many debuggers available on Niagara, including gdb, valgrind, and DDT

Let’s take a quick look at DDT

Jaime Pinto, James Willis Mastering HPC October 28, 2024 48 /53



What is DDT?
DDT stands for Distributed
Debugging Tool

Powerful GUI-based commercial
debugger by Linaro

Developed for debugging parallel,
multi-threaded, and distributed
applications

Widely used in high-performance
computing environments

Available on Niagara and other Alliance
systems (Note: license only allows
debugging up to 64 processes)

Jaime Pinto, James Willis Mastering HPC October 28, 2024 49 /53



DDT Features

Key Features:

▶ Parallel and distributed debugging capabilities

▶ Graphical user interface for intuitive navigation

▶ Support for multiple programming languages (e.g. C, C++, Fortran, Python)

▶ Supports MPI, OpenMP, threads, CUDA, ROCm and more

▶ Integrated performance analysis tools - MAP

▶ Memory debugging functionalities

We have a full course on DDT, happening April 28th. Please sign up if you are interested:
https://education.scinet.utoronto.ca/course/view.php?id=1373

Jaime Pinto, James Willis Mastering HPC October 28, 2024 50 /53

https://education.scinet.utoronto.ca/course/view.php?id=1373


Hands-on

With the remaining time, we can help you with any issues you are having with your jobs

Jaime Pinto, James Willis Mastering HPC October 28, 2024 51 /53



Summary

We have covered a lot of information in this course:

▶ Identifying your application
▶ Code compilation
▶ Interactive sessions
▶ Performance tuning
▶ Batch submission
▶ Checkpointing
▶ Job monitoring
▶ Debugging

Jaime Pinto, James Willis Mastering HPC October 28, 2024 52 /53



Further information
Useful sites

Niagara: https://docs.alliancecan.ca/wiki/Niagara_Quickstart

Mist: https://docs.scinet.utoronto.ca/index.php/Mist

Other Alliance clusters or general topics: https://docs.alliancecan.ca

System Status: https://docs.scinet.utoronto.ca

Training: https://education.scinet.utoronto.ca/

Support

Email to niagara@tech.alliancecan.ca or support@scinet.utoronto.ca

Still need help? Request a one-to-one consultation (request via email).

Jaime Pinto, James Willis Mastering HPC October 28, 2024 53 /53

https://docs.alliancecan.ca/wiki/Niagara_Quickstart
https://docs.scinet.utoronto.ca/index.php/Mist
https://docs.alliancecan.ca
https://docs.scinet.utoronto.ca
https://education.scinet.utoronto.ca/

