
Introduction to Supercomputing

Bruno C. Mundim

September 23, 2024

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 1 / 53

About this course

We’ll introduce basic concepts of
“supercomputing”, a.k.a. high performance
computing
It is intended to be a high level primer for those
largely new to HPC.
Topics will include motivation for HPC, essential
issues, problem characteristics as they apply to
parallelism and a high level overview of parallel
computation models.
Some familiarity with the Linux command line and
editing text files is preferred.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 2 / 53

http://www.scinethpc.ca

What do you need for the course?

A computer with browser and internet connection to attend the lectures.
A Zoom client to connect to the office hours.
An ssh client to connect to the SciNet Teach cluster.

▶ Linux and MaxOS: Use the ssh command in the terminal.
▶ Windows: Use MobaXTerm https://mobaxterm.mobatek.net.

Make sure you can login to the website https://scinet.courses/1357 !

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 3 / 53

http://www.scinethpc.ca
https://mobaxterm.mobatek.net
https://scinet.courses/1357

Course structure

MONDAY: A first online lecture over Zoom (you’re here!).
An assignment will be given at the end of the lecture.
You can ask questions:

▶ in the chat during and at the end of the lecture.
▶ in the forum on the course site.
▶ and also during:

WEDNESDAY: Zoom office hours.
Submit a solution for the assignment on the course website (deadline is midnight Thursday).
FRIDAY: A last online lecture on Zoom that will address the solution, common mistakes, and
wrap-up.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 4 / 53

http://www.scinethpc.ca

1

Introduction

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 5 / 53

What is Supercomputing?

Supercomputing, a.k.a. High Performance Computing, is leveraging larger and/or multiple
computers to solve computations in parallel.

What does it involve?
hardware - instruction pipelines and sets, multi-processors, inter-connects.
algorithms - concurrency, efficiency, communications.
software - parallel approaches, compilers, optimization, libraries.

When do I need Supercomputing/HPC?
My problem takes too long→ more/faster computation
My problem is too big→ more memory
My data is too big→ more storage

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 6 / 53

http://www.scinethpc.ca

Examples where supercomputing is needed

Computational Fluid Dynamics
Molecular Dynamics and N-Body Simulations
Smooth Particle Hydrodynamics
Monte Carlo Simulations
Computational Quantum Chemistry
Bioinformatics
Data Science and Machine Learning

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 7 / 53

http://www.scinethpc.ca

The “free lunch” is over

There once was a time in which computer
processor speeds steadily increased in newer
generations.
Due to physical limitations, this trend
stopped around 2005, and advances in the
speed of processors, memory, and storage,
have plateaued.

So:
Modern HPC means more hardware, not
faster hardware.
Thus parallel programming and computing is
required.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 8 / 53

http://www.scinethpc.ca

Wait, what about Moore’s Law?

Moore’s law. . .

describes a long-term trend in the history of
computing hardware. The number of transistors
that can be placed inexpensively on an integrated
circuit doubles approximately every two years.
But. . .

Moore’s Law didn’t promise us clock speed.
More transistors but getting hard to push
clock speed up.
Power density is limiting factor.
So more cores at fixed clock speed.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 9 / 53

http://www.scinethpc.ca

All good, more cores = faster, right?

More cores is like having more workers.
HR Dilemma

Problem: job needs to get done faster
can’t hire substantially faster people
can hire more people
must alter workflow from a one-person job

Solution:
split work up between people
(divide and conquer)
requires rethinking the workflow process
requires administration overhead
eventually administration larger than actual
work

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 10 / 53

http://www.scinethpc.ca

2

Supercomputer Architectures

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 11 / 53

Clusters

Take existing powerful standalone computers
(called a “node’ ’),
Link them together through a network (or
“interconnect”).
Easy to build and easy to expand.
Because each node has its own memory that
the other nodes cannot see, these are called
distributed memory systems.
Nodes communicate and transfer data
through messages.
Programming Model:
Message Passing Interface (MPI)

~ ~
~

~

n n
n

n

Core1

Core2

Core3

Core4

�
�
�
�
�
�
�
�
�
�
�
���

�
���*

6

�
�

�
��

�
�
�
�
�
�
�
�
�
�
�
��

��
���

?

�
�

�
�	

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 12 / 53

http://www.scinethpc.ca

Multi-core Computers

A collection of processors that can see and
use the same memory.
Limited number of cores, and much more
expensive when the number of cores is large.
Coordination/communication done through
memory.
Also known as shared-memory systems.
Programming model: Threads (e.g. OpenMP)

Your desktop, laptop and cell phone likely use this
kind of architecture.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 13 / 53

http://www.scinethpc.ca

Accelerators

Systems with accelerators are machines which
contain an “off-host” accelerator, such as a
GPU or Xeon Phi.
These accelerator devices are very fast and
good at massively parallel processing (having
500-2000+ cores).
Complicated to program.
Programming: CUDA, OpenACC, OpenMP,
and OpenCL.
Or implicit programming using frameworks
like Tensorflow.
Needs to be combined with at least some
‘host’ code: heterogeous computing

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 14 / 53

http://www.scinethpc.ca

Examples of Supercomputers
#1ª Frontier (at Oak Ridge National Lab)
Frontier has 9,472 Infiniband-connected nodes, each with 64 CPU cores, 4 GPUs and 4TB of memory.
#4ª Fugaku (at RIKEN in Japan)
Fugaku has 158,976 nodes, each with 48 cores and 32GB of memory, no GPUs, with a “Tofu” network.
#241ª Niagara (at SciNet/UofT)
Niagara is currenty the fourth fastestª supercomputer in Canada.
It has 2,024 Infiniband-connected nodes, each with 40 CPU cores and 192GB RAM. The nodes are
connected with a very fast Infiniband network in a Dragonfly+ topology.
Its GPU expansion, Mist, is like Summit, but 50x smaller. More GPUs are on Cedar, Graham, Beluga &
Narval.
Teach Cluster (at SciNet)
This cluster is composed of 42 Infiniband-connected nodes, each of which has 16 cores and 32GB RAM.
ª According to https://www.top500.org , a ranking based on the HPL benchmark.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 15 / 53

http://www.scinethpc.ca
https://www.top500.org

3

Parallel processing

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 16 / 53

Parallelism

So: not faster compute cores, but more.
Must have something to do for all these cores.
Find parts of the program that can done
independently, and therefore in parallel or at
the same physical time.
There must be many such parts.
Their order of execution should not matter
either.
Data dependencies limit parallelism.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 17 / 53

http://www.scinethpc.ca

Parameter “sweep”: best case scenario

Aim is to get results from a model as a
parameter varies.
Can run the serial program on each processor
at the same time.
Get more done.

'

&

$

%

µ = 1

'

&

$

%

µ = 2

'

&

$

%

µ = 3

'

&

$

%

µ = 4

? ? ? ?

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 18 / 53

http://www.scinethpc.ca

Throughput
How many tasks can you do per unit time?

throughput = H =
N

T

Maximizing H means that you can do as much as possible.
Independent tasks: using P processors increases H by a factor Piiii

?���� vs.

i
?����

i
?����

i
?����

i
?����

T = NT1 T = NT1/P
H = 1/T1 H = P/T1

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 19 / 53

http://www.scinethpc.ca

Scaling — Throughput

How a problem’s throughput scales as
processor number increases (“strong
scaling’ ’).
In this case, linear scaling:

H ∝ P

This is Perfect scaling.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 20 / 53

http://www.scinethpc.ca

Scaling – Speedup

How much faster the problem is solved as
processor number increases.
Measured by the serial time divided by the
parallel time

S =
Tserial

T (P)
∝ P

For embarrassingly parallel applications:
Linear speed up.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 21 / 53

http://www.scinethpc.ca

4

Non-Ideal Parallel Computations

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 22 / 53

Non-ideal case #1: Non-parallelizable algorithms

Say we want to integrate some tabulated
experimental data.
Integration can be split up, so different
regions are summed by each processor.
Non-parallelizable parts of the algorithm:

▶ First need to get data to processor
▶ And at the end bring together all the sums:

reduction

Ts ≡ time for serial part (Partition+Reduction)
Tp ≡ time for parallelizable part (for P = 1,

so, the sum of all the regions on the right)

�� ��Partition data

? ? ? ?'

&

$

%
region 1

'

&

$

%
region 2

'

&

$

%
region 3

'

&

$

%
region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 23 / 53

http://www.scinethpc.ca

Deriving Amdahl’s law
Speed-up (without parallel overhead):

S =
Tp + Ts

Tp/P + Ts

or, with f ≡ Ts/(Ts + Tp) the serial fraction,

S =
1

f + (1− f)/P

Note that
lim

P →∞
S =

1
f

Serial part dominates asymptotically.
Speed-up limited, no matter size of P .

(example for f = 5%)

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 24 / 53

http://www.scinethpc.ca

Beating Amdahl’s law
Scale up!

The larger the system size N , the smaller the
serial fraction:

f(N) ∼
1
N

Weak scaling
Increase problem size while increasing P

T imeweak(P) = T ime(N = n× P, P)

Weak scaling
Increase problem size while increasing P

T imeweak(P) = T ime(N = n× P, P)

Good weak scaling means this time approaches a
constant for large P .
Gustafson’s Law: Many problems can be efficiently
parallelized in weak scaling, since f → 0.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 25 / 53

http://www.scinethpc.ca

Non-ideal case #2: Non-locality

Moving data around slows things down because communication is slower than computing.
Not computing where the data resides or was generated, requires data movement and wastes time.
Many memory and storage systems hide locality, using caches or pulling data automatically.
To influence the locality, you need to change the data access pattern.

Communication and data motion can rarely be completely avoided, but can be minimized.

Shared memory systems: having data processed by the core that generated it improves locality.
Distributed systems: not having data in the process that needs it, means more communications.
File systems and memory: accessing data contiguously helps.
E.g. using many separately files is not contiguous, and also requires additional I/O operations.
Reusing data helps.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 26 / 53

http://www.scinethpc.ca

Non-ideal case #3: Load imbalance

Suppose you have 32 computations to do,
and they are all independent.
That would scale perfectly, but this time
there is a catch:
The different computations takes very
different times.

And we can’t know how long a
computation will take before we run it.

Let’s say we want to run these computations
on 8 cores.

Easy, right? We’ll just run 4 sets of 8!

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 27 / 53

http://www.scinethpc.ca

Easy, right? We’ll just run 4 sets of 8!

Due to the load imbalance, only 42% used.
Speedup: S = 3.4 We can do better!

Let’s give a new task as soon as a core is done:

Much better: 72% is used.
Speedup: S = 5.8

Could try to code this ourselves, but
there’s a tool that implements that:
GNU Parallel+
Before explaining this utility, let’s discuss
why we care so much about efficiency.

+ O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014
Bruno C. Mundim Introduction to Supercomputing September 23, 2024 28 / 53

https://doi.org/10.5281/zenodo.1146014

5

Working on Shared, Remote Resources

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 29 / 53

May I have a supercomputer, please?

If you need a supercomputer, your computation has outgrown your computer or laptop.
Very few people can afford their own supercomputer: you will need to use a supercomputer that you
share with potentially hundreds or thousands of other users.
Due to the internet, resources can be used remotely, allowing for more sharing and larger systems.
Sharing is good. Shared resources get better utilization.
No cores need to wait e.g. because the code isn’t ready or the new postdoc hasn’t arrived. Someone
else can use the computing time in the meantime.
E.g., Niagara’s utilization typically lies between 94% and 98%, with jobs always in the queue.

Fact

Because supercomputers are remote and shared resources, these machines need to be used quite
differently from how you use your own computer.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 30 / 53

http://www.scinethpc.ca

It’s Remote
You’re at your computer (“terminal”)
The supercomputer is in a data centre
somewhere (“server”).
You must connect remotely using ssh
(“secure shell”).
You must interact with the supercomputer
using the command line.
Yes, you read that right,
the command line!

Yes, you read that right,
the command line!

Nobody uses a GUI in HPC. Nobody.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 31 / 53

http://www.scinethpc.ca

Hands-on: Access to SciNet’s Teach cluster
Logging in

Look up your lcl_uothpc101sNNNN account on the email used to register to the course website.
Click on the password reset link, and finish that process.
To log in, type on the command line (could be in a local terminal in MobaXTerm in Windows):
$ ssh lcl_uothpc101sNNNN@teach.scinet.utoronto.ca

and type the password you just set.

Transfering files

To download files from the internet to Teach when logged in, use
$ wget URL

To copy files from your computer to Teach, or vice-versa (must not be logged in on Teach)
$ scp filename USERNAME@teach.scinet.utoronto.ca:path/filename
$ scp USERNAME@teach.scinet.utoronto.ca:path/filename filename

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 32 / 53

http://www.scinethpc.ca

It’s shared

You’re on the login node together with all other folks in this course.
You have a home directory, called $HOME, and a scratch directory $SCRATCH
(in fact, these are variables containing their true location).
All other nodes of the Teach Cluster are compute nodes.
To run on compute nodes, you need to create a job script that contains a request for specific
resources for a specific time.
You pass this job script to the scheduler using the sbatch command.
The scheduler used on Teach, and on many other supercomputers, is called SLURM.
The scheduler allocates compute resources to your job.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 33 / 53

http://www.scinethpc.ca

6

Hands-on: Submit a job on the Teach cluster

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 34 / 53

Follow along, if you can.

Log into the teach cluster. $ ssh USERNAME@teach.scinet.utoronto.ca

Change directory to your scratch folder. $ cd $SCRATCH

Copy the material needed for this course. $ cp -r /scinet/course/introhpc $SCRATCH

Change to the newly created directory. $ cd $SCRATCH/introhpc

Submit the job ‘sweep_bondbreak.sh’. $ sbatch sweep_bondbreak.sh

Check the status of your job in the queue. $ squeue --me

Once completed, check the output in the file
slurm-<JobID>.out

$ less slurm-*.out

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 35 / 53

http://www.scinethpc.ca

7

Wait, what did we compute exactly, and how?

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 36 / 53

Simulation of chemical bond breakage
sweep_bondbreak.sh runs a parameter
sweep for an app called bondbreak.
bondbreak performs a MC simulation.
The model is for a bond between two atoms,
that can break due to thermal fluctuations.
When the bond breaks, the simulation stops
and prints the breakage time.

Model parameters

the initial bond extension
the temperature
(sets strength of thermal fluctuations)

These go into the job script. . .

Simulation parameters

the timestep
maximum time to simulate
random seed
name of file to write data to
interval at which write out data
name of file to write log messages to

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 37 / 53

http://www.scinethpc.ca

How to use bondbreak
$./bondbreak --help

bondbreak - compute time to break a hypothetical chemical bond
using a stochastics simulation

Usage:

bondbreak [OPTION]...

-d, --delta=DELTA time step (default: 0.0003)
-f, --filename=FILENAME output filename (default: output.dat)
-h, --help print help
-i, --initial=INITIAL initial bond extension (default: 1.15)
-l, --logfile=LOGFILE filename for log messages (default: -)
-o, --outtime=OUTTIME interval at which to write to file (default: 1.0)
-r, --runtime=RUNTIME max. time to simulate (default: 400.0)
-s, --seed=SEED random seed (default: 13)
-t, --temp=TEMP temperature (default: 1.2)

Note: Give arguments to options in long form as '--xyz ARG' or '--xyz=ARG'
or in short form as '-x ARG' or '-xARG' (but not as '-x=ARG').

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 38 / 53

http://www.scinethpc.ca

Job script (sweep_bondbreak.sh)

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --time=00:20:00

module load python/3

temperature
T=2.2

Run multiple cases with different random seeds
for S in {1..96} ; do

echo "Simulation $S of 96"
./bondbreak --temp $T --seed $S \
--filename out/$T-$S.dat --logfile out/$T-$S.log

done

Extract the breakage times from the logs
awk '/BREAKAGE DETECTED/{print $8}' out/$T-*.log

←− First line makes this a bash shell script}
#SBATCH lines request 1 core for 20 minutes

Rest runs on allocated compute node.
←− Most software requires module commands
←− Setup up parameters

←− A loop in the bash shell
←− Pass parameter to bondbreak app

(filenames depending on T and S)

←− Collect breakage times (awk out of scope)

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 39 / 53

http://www.scinethpc.ca

8

The SLURM Scheduler

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 40 / 53

Why a scheduler?

The compute nodes/cores need to be fairly shared among all users.
You can’t just reserve cores for particular users, or at least some of them wouldn’t be utilized all the
time (which is a waste, as other users could have used them).
So instead of having fixed reservations, users must submit jobs.
Each job must specify the resources it needs (time/cpus/gpus).
A program called the scheduler takes those resource requests and finds a time slot and (set of)
compute node(s) to allocate for the job.

On a busy system, the allocated time is usually in the future, and often unknown.
I.e., you have to wait.

Scheduling for a whole cluster is hard and takes time, therefore there are limits to how many
jobs you can submit as well as a minimum size. If you have many small jobs to do, bunch them
up and use GNU Parallel (more on that later).

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 41 / 53

http://www.scinethpc.ca

Scheduling Factors
Priority Allocations
After an annual competition, yearly priority allocations are given to selected groups.
These priorities are set to hit a target usage of a certain number of cores for a certain time.
Past usage
If a research group has recently used a lot of resources, their priority goes down.
Time
The longer a job is in the queue, the more priority it accrues.
Available resources and job sizes
Requests for scarce resources or for many nodes/memory can lead to much longer wait times.
Requests for moderate resources (e.g. a single node for 30 minutes) can lead to shorter wait times if
there are ‘holes’ in the schedule that it can fill.

The scheduler has to sort all jobs using these criteria & give resources to the jobs with the most priority.
Bruno C. Mundim Introduction to Supercomputing September 23, 2024 42 / 53

http://www.scinethpc.ca

Using the Scheduler
There are different schedulers, but the SciNet clusters use SLURM (as do all Alliance clusters).

Some of the most common parameters are:
-t --time amount of time
-N --nodes number of nodes
-n --ntasks number of tasks

--ntasks-per-node number of tasks per node
-c --cpus-per-task number of threads per task

--gres=... special requests, e.g. GPUs
--mem=... amount of memory

Commands to interact with the scheduler
sbatch submit job
squeue see queued jobs and their status
scancel cancel a job
seff see job stats after completion
salloc/debugjob get short interactive job on a compute node

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 43 / 53

http://www.scinethpc.ca

How to program a supercomputer

The job script is in the bash programming language, but often starts one particular application at its core.
Core applications are written in programming languages that need to be translated into machine code
that the computer can understand.

For compiled languages, like C, C++, Fortran, or CUDA/HIP, the translation is done ahead of the
computation for the application as a whole. The compiler analyzes the entire code and optimizes the
resulting machine code. Some compilers can create applications that run on GPUs (CUDA/HIP and
certain OpenMP/OpenACC compilers).
For scripted applications, like bash, Python and R, translation is done while the application runs, one
line at a time. This tends to be much more inefficient than compiled language, but scripted
languages tend to be easier to learn and more flexible.

Scripted languages may use packages that are themselves written in a compiled languages (e.g. Numpy
and SciPy), or frameworks that compile on the fly (e.g. Tensorflow) to alleviate the inefficiencies
associated with scripting languages.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 44 / 53

http://www.scinethpc.ca

9

GNU Parallel

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 45 / 53

Managing subjobs of different durations.

Surprisingly versatile (perl) script, especially
for text input.
Gets your many cases assigned to different
cores and on different nodes without much
hassle.
Invoked using the parallel command, after
doing:
module load gnu-parallel

O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014
http://www.gnu.org/software/parallel/parallel_tutorial.html

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 46 / 53

http://www.scinethpc.ca
https://doi.org/10.5281/zenodo.1146014
http://www.gnu.org/software/parallel/parallel_tutorial.html

GNU Parallel example

Load the gnu-parallel module in your script.
The “-j ...” flag indicates you wish GNU
parallel to run 16 subjobs at a time.
The “--nodes” parameter is important here
to make sure all allocated cores are on the
same node.
(Running GNU Parallel across nodes is quite
possible, but requires extra flags.)
If you can’t fit as many subjobs onto a node
as there are cores due to memory constraints,
specify a different value for the “-j” flag.
Put all the commands for a given subjob onto
a single line.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16
#SBATCH --time=1:00:00
#SBATCH --job-name=gnuparallelx16

module load intel/2018.2 gsl/2.4
module load gnu-parallel

Run the code on 16 cores.
parallel -j $SLURM_TASKS_PER_NODE <<EOF
cd jobdir1; ../app; echo "job 1 done"
cd jobdir2; ../app; echo "job 2 done"
...
cd jobdir200; ../app; echo "job 200 done"
EOF

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 47 / 53

http://www.scinethpc.ca

What does GNU parallel do?

GNU parallel assigns subjobs to the processors.
▶ As subjobs finish it assigns new subjobs to the free processors.
▶ It continues to assign subjobs until all subjobs in the subjob list are assigned.

Consequently there is built-in load balancing!
You can use GNU parallel across multiple nodes as well.
It can also log a record of each subjob, including information about subjob duration, exit status, etc.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 48 / 53

http://www.scinethpc.ca

GNU Parallel syntax

Some commonly used arguments for GNU parallel:
--jobs NUM, sets the number of simultaneous subjobs.
By default, parallel uses the maximum number of cores (16/80 on Teach/Niagara nodes).
Same as -j N.
--joblog LOGFILE, causes parallel to output a record for each completed subjob. The records
contain information about subjob duration, exit status, and other goodies.
--resume, when combined with --joblog, continues a GNU parallel job that was killed prematurely
or did not finish all subjobs.
--pipe, splits stdin into chunks given to the stdin of each subjob.
--memfree SIZE, sets minimum memory free when starting another subjob.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 49 / 53

http://www.scinethpc.ca

GNU Parallel - replacement strings

In the previous example, the commands GNU Parallel is to run were read from standard input.
A lot of those commands contain the same parts.
Instead, we can specify on the command line that part of the commands that is the same, with
values for placeholders to be read as from standard input.

For instance, this:
parallel <<EOF
cd jobdir1;../app;echo "job 1 done"
cd jobdir2;../app;echo "job 2 done"
...
cd jobdir200;../app;echo "job 200 done"
EOF

is equivalent to
parallel 'cd jobdir{};../app;echo "job{} done"'<<EOF
1
2
...
200
EOF

The replacement string here is {}.
There are other replacement strings that can remove extensions, paths, etc.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 50 / 53

http://www.scinethpc.ca

GNU Parallel - command line argument data
We can also give the arguments on the command line instead of as standard input.
parallel 'cd jobdir{};../app;echo "job{} done"' <<EOF
1
2
...
200
EOF

is equivalent to
parallel 'cd jobdir{};../app;echo "job{} done"' ::: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

But bash has sequence expressions, so we can generate a list of 200 lines with {1..200}, and write:
parallel 'cd jobdir{};../app;echo "job{} done"' ::: {1..200}

Multiple placeholders are also possible using this technique, e.g.
parallel 'echo {2} {1}' ::: {1..10} ::: {0..200..50}

which prints out all combinations of the elements of each set.
Bruno C. Mundim Introduction to Supercomputing September 23, 2024 51 / 53

http://www.scinethpc.ca

10

Hands-on Assignment

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 52 / 53

Assignment Task

The script sweep_bondbreak.sh executes 96 repeats of the computation of the bond breakage
time, one by one.
These could all run in parallel.
How long did this script take?
Create a modified version of sweep_bondbreak.sh, sweep_bondbreak_parallel.sh, that uses
GNU Parallel to parallelize the computation using 16 cores on a single compute node of the Teach
cluster.
Submit this new script to the scheduler. How long did the new script take?
Questions? Ask them in the forum, and/or attend the hands-on session.
The script and its output should be submitted to the course website by Thursday, September 26,
11:55 PM (EDT) in order to receive credits counting towards our certificate.

Bruno C. Mundim Introduction to Supercomputing September 23, 2024 53 / 53

http://www.scinethpc.ca

	Introduction
	Supercomputer Architectures
	Parallel processing
	Non-Ideal Parallel Computations
	Working on Shared, Remote Resources
	Hands-on: Submit a job on the Teach cluster
	Wait, what did we compute exactly, and how?
	The SLURM Scheduler
	GNU Parallel
	Hands-on Assignment

