
Introduction to Linux Shell

2

WHAT IS A SHELL?

3

WHAT IS A SHELL?

In computing, a shell is a user interface for access to an operating system's

services. In general, operating system shells use either a command-line

interface (CLI) or graphical user interface (GUI), depending on the computer's

role and particular operation. It is named a shell because it is the outermost

layer around the operating system kernel.

4

WHAT IS A SHELL?

A program that interprets commands.

Allows a user to execute commands by typing them manually at a terminal, or

automatically in programs called shell scripts, or simply scripts.

A shell is not an operating system. It is a way to interface with the operating

system and run commands.

Alternate names: console, terminal, command line, command line interface,

command prompt.

5

WHAT IS A SHELL?

Alternate names:

console

terminal

command line

command line interface

command prompt.

6

SHELL TYPES

Just like people know different languages and dialects, your UNIX system will usually offer a

variety of shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX−related

environments. This is the basic shell, a small program with few features. While this is not the

standard shell anymore, it is still available on every Linux system for compatibility with UNIX

programs.

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most

advisable for beginning users while being at the same time a powerful tool for the advanced

and professional user. On Linux, bash is the standard shell for common users. This shell is a

so−called superset of the Bourne shell, a set of add−ons and plug−ins. This means that the

Bourne Again shell is compatible with the Bourne shell: commands that work in sh, also work

in bash. However, the reverse is not always the case. All examples and exercises in this

course use bash.

7

SHELL TYPES

csh. The original C shell isn’t much used on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

tcsh. This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some circles,
but no major Linux distributions make it the default shell.

ksh. The Korn shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them further.

zsh. The Z shell (zsh) takes shell evolution further than the Korn Shell, incorporating features
from earlier shells and adding still more. zsh is the new default shell on macOS.

This course is about bash. This is the default shell in Linux and is the one we will use in this
course. For now on the terms “shell” and “bash” refer to the same.users.

The file /etc/shells gives an overview of known shells on a Linux system:

$ cat /etc/shells
/bin/sh
/bin/bash
/sbin/nologin
/bin/ksh

8

WHAT IS BASH?

BASH = Bourne Again SHell

Bash is a shell written as a free replacement to the standard Bourne Shell
(/bin/sh) originally written by Steve Bourne for UNIX systems.

It has all of the features of the original Bourne Shell, plus additions that make
it easier to program with and use from the command line.

Since it is Free Software, it has been adopted as the default shell on most
Linux systems and other Unix flavours.

9

ACCESS

Windows

There are different ways to access a Linux system from Windows:

➔PuTTY

➔Windows PowerShell

➔Secure Shell for Google Chrome

➔OpenSSH for Cygwin Terminal

10

ACCESS
Windows

PuTTY:

●Search for “putty download” on Google.

●Select this result: www.chiark.greenend.org.uk (This is the original...).

●Follow link to download putty

●Install putty

●Run putty

11

Windows PowerShell:

Windows PowerShell has slowly been taking over from the Windows Command Prompt
app since it was introduced in Windows 7. More recently, support for OpenSSH has
been added, which you can incorporate in PowerShell as follows:

●Press WIN + I to open Settings.
●Open Apps > Apps & features
●Click Optional features
●Click +Add a feature
●Browse the list to find OpenSSH Client
●Select and click Install
●When this has completed reboot Windows 10

With OpenSSH added, you can use it by opening Windows PowerShell (right-click Start
> PowerShell) and typing a connection command.

ACCESS
Windows

12

Windows PowerShell:

With OpenSSH added, you can use it by opening Windows PowerShell (right-
click Start > PowerShell) and typing a connection command.

ssh username@192.168.1.10

ACCESS
Windows

13

Secure Shell for Google Chrome:

Google provides an SSH client called Secure Shell App, that can be added to
the Chrome browser. Just install the Secure Shell app from the Chrome Web
store. Although it runs in the Chrome browser, it runs completely offline so you
don't need internet access to use it. So it works as well with devices on your
local network as it does with remote servers.

Secure Shell App opens as a browser tab. Simply enter your credentials and
the hostname (IP address) of the remote SSH server. You can also append
additional SSH command-line arguments, if necessary.

As with other Chrome web apps, the Secure Shell App can open in a
dedicated window to separate it from your main browser.

As Secure Shell is a Chrome web app, it's also available for macOS, Linux,
and even Chrome OS.

ACCESS
Windows

14

OpenSSH for Cygwin Terminal:

You can download Cygwim from: http://cygwin.com/install.html

Cygwin is a large installation package so you may prefer to install just
OpenSSH.

To do this, run the installer and when you're prompted to Select Packages,
search for OpenSSH. Expand Net and in the New column, click Skip so it
displays the version to download.

Click Next to proceed, review the packages to be installed, then Next again.

After the installation process finishes, launch Cygwin's Terminal application
from the Start menu. To start an SSH connection, use the same ssh command
that you'd run on Linux and other UNIX-like operating systems.

ACCESS
Windows

http://cygwin.com/install.html

15

ACCESS

Mac Instructions:

Run terminal

16

ACCESS

Mac Instructions:

Run terminal

Is that easy?!

Yes, it’s Mac!

Detailed instructions:

To find “terminal”:
●Press command+space
●Type “terminal”
●Move icon to the dock (you will be using it on a daily basis from now on until the end of
ages)

Click on it to open “terminal”.

17

ACCESS

Mac or Linux (Terminal):

$ ssh username@niagara.scinet.utoronto.ca

Windows (Putty):

Host Name: niagara.scinet.utoronto.ca

User: <Your username>
Password: <Your password>

18

ls more head Show head of a file

pwd Print Working Directory less tail Show tail of a file

ps Process Status touch Touch a file history Show command history

cd Change Directory man Linux manuals find

mv Move (Rename) grep Find a pattern in a file chmod Change permissions

rm Remove date Show/Modify system date chown

mkdir Make directory time chgrp

rmdir Remove directory vi (vim) Powerful text editor wc Word count

cat Concatenate echo Send to stdout

List contents of a
directory

Show files one page at a
time
Show files one page at a
time

find ANYTHING in the
filesystems

Change owner of an
object

Time execution of a
command

Change group of an
object

COMMON COMMANDS

19

ls List contents of a directory:
$ ls
iso linux linux-4.11.8-1 linux-4.11.8-1-obj linux-obj packages vboxhost-5.1.22 vtun-
2.6.tar.gz

ls List contents of a directory (long listing format):
$ ls -l
total 116
drwxrwxr-x 3 root root 4096 Nov 5 10:28 iso
lrwxrwxrwx 1 root root 14 Jul 16 2017 linux -> linux-4.11.8-1
drwxr-xr-x 24 root root 4096 Jul 16 2017 linux-4.11.8-1
drwxr-xr-x 3 root root 4096 Jul 16 2017 linux-4.11.8-1-obj
drwxr-xr-x 3 root root 4096 Jul 16 2017 linux-obj
drwxr-xr-x 8 root root 4096 Jul 16 2017 packages
lrwxrwxrwx 1 root root 34 Apr 28 2017 vboxhost-5.1.22 -> /usr/share/virtualbox/src/vboxhost
-rw-r--r-- 1 mts root 95637 Aug 23 12:49 vtun-2.6.tar.gz

COMMON COMMANDS

pwd Print Working Directory:
$ pwd
/usr/src

20

date Show/modify date. Print or set the system date and time:
$ date
Mon Jun 12 10:27:28 EDT 2023

echo send to stdout:
$ echo 'Hello World!'
Hello World!

COMMON COMMANDS

$ echo $USER
mts
$ echo $HOME
/home/mts

echo can be used to expand variables:

mkdir make a directory:
$ mkdir linux_course
$ ls
command.out directory histcontrol.txt linux_course linux_script newdir test
$ cd linux_course/
$ pwd
/home/mts/linux_course

Introduction to Linux Shell

22

NAVIGATING THE FILE SYSTEM

Where is my C: drive?!

A filesystem organizes a computer's files and directories into a tree structure:
The first directory in the filesystem is the root directory. It is the parent of all
other directories and files.

The Unix filesystem is a tree-like hierarchy of directories and files. At the base
of the filesystem is the “/” directory, otherwise known as the “root” (not to be
confused with the root user) or “root directory”.

Unlike DOS or Windows filesystems that have multiple “roots”, one for each
disk drive, the Unix filesystem mounts all disks somewhere underneath the “/”
filesystem.

23

NAVIGATING THE FILE SYSTEM

24

NAVIGATING THE FILE SYSTEM

THE LINUX DIRECTORY LAYOUT:

Directory Description

/ The nameless base of the filesystem. All other directories, files, drives, and devices are attached to this
root. Commonly (but incorrectly) referred to as the “slash” or “/” directory. The “/” is just a directory
separator, not a directory itself.

/bin Essential command binaries (programs) are stored here (bash, ls, mount, tar, etc.)

/boot Static files of the boot loader. (Kernel, initrd, etc)

/dev Device files. In Linux, hardware devices are accessed just like other files, and they are kept under this
directory.

/etc Host-specific system configuration files.

/home Location of users' personal home directories (e.g. /home/susan).

/lib Essential shared libraries and kernel modules.

/proc Process information pseudo-filesystem. An interface to kernel data structures.

/root The root (superuser) home directory.

25

NAVIGATING THE FILE SYSTEM

THE LINUX DIRECTORY LAYOUT:

Directory Description

/sbin Essential system binaries (fdisk, fsck, init, etc).

/tmp Temporary files. All users have permission to place temporary files here.

/usr The base directory for most shareable, read-only data (programs, libraries,
documentation, and much more).

/usr/include Header files for compiling C programs.

/usr/lib Libraries for most binary programs.

/usr/sbin Non-vital system binaries (lpd, useradd, etc.)

/usr/share Architecture-independent data (icons, backgrounds, documentation, man pages, etc.).

/usr/src Program source code. E.g. The Linux Kernel, source RPMs, etc.

/usr/X11R6 The X Window System.

26

NAVIGATING THE FILE SYSTEM

THE LINUX DIRECTORY LAYOUT:

Directory Description

/var Variable data: mail and printer spools, log files, lock files, etc.

/sys Modern Linux distributions include a /sys directory as a virtual filesystem (sysfs, comparable to /proc,
which is a procfs), which stores and allows modification of the devices connected to the system

/lost+found The lost+found directory is a construct used by fsck when there is damage to the filesystem (not to
the hardware device, but to the fs). Files that would normally be lost because of directory corruption
would be linked in that filesystem's lost+found directory by inode number.

/mnt This is a generic mount point under which you mount your filesystems or devices.

/opt This directory is reserved for all the software and add-on packages that are not part of the default
installation.

27

Exploring Your Linux Shell Options

PATH

PATH is a shell variable, also called an environment variable. It holds the
search path for commands. It is a colon-separated list of directories in which
the shell looks for commands. A common value is:
$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin

PATH is slightly different for the root user:
echo $PATH

/sbin:/usr/sbin:/usr/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/games:/root/bin

28

Exploring Your Linux Shell Options

PATH
When you type a command in the command-line, the shell looks for a file in
the directories listed in the PATH variable, in the same order as they are in the
variable. When the shell finds the first, it runs it.

If you want to know where the executable file is located, you can run a
command called which:
$ which grep

/bin/grep

$ which nocommand

which: no nocommand in (/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin)

29

Exploring Linux command-line tools

Command completion

Many users find typing commands to be tedious and error prone. This is
particularly true of slow or sloppy typists. For this reason, Linux bash shell
include various tools that can help speed up operations

Performing Some Shell Command Tricks

30

Exploring Linux command-line tools

Command completion

The first of these is command completion: type part of a command or (as an

option to a command) a filename, and then press the Tab key. The shell tries to

fill in the rest of the command or the filename. If just one command or filename

matches the characters you’ve typed so far, the shell fills it in and places a

space after it. If the characters you’ve typed don’t uniquely identify a command

or filename, the shell fills in what it can and then stops. Depending on the shell

and its configuration, it may beep. If you press the Tab key again, the system

responds by displaying the possible completions. You can then type another

character or two and, if you haven’t completed the command or filename, press

the Tab key again to have the process repeat.

Performing Some Shell Command Tricks

31

Exploring Linux command-line tools

history

This is, by far, the most powerful tool of the command-line. The history keeps a

record of every command you type (stored in ~/.bash_history). If you’ve typed a

long command recently and want to use it again, or use a minor variant of it,

you can pull the command out of the history.

The simplest way to do this is to press the Up arrow key on your keyboard; this

brings up the previous command. Pressing the Up arrow key repeatedly moves

through multiple commands so you can find the one you want. If you overshoot,

press the Down arrow key to move down the history.

Performing Some Shell Command Tricks

32

Exploring Linux command-line tools

history (continued)

Frequently, after finding a command in the history, you want to edit it. The bash shell,

provides editing features modelled after those of the Emacs editor

Performing Some Shell Command Tricks

Editing the command line

Delete text Pressing
The Delete key deletes the character under the cursor, whereas pressing the Backspace
key deletes the character to the left of the cursor. Pressing Ctrl+K deletes all text from the
cursor to the end of the line. Pressing Ctrl+X and then Backspace deletes all the text
from the cursor to the beginning of the line. Pressing Ctrl-U deletes all text from the
cursor to the beginning of the line.

Transpose text
Pressing Ctrl+T transposes the character before the cursor with the character under the
cursor. Pressing Esc and then T transposes the two words immediately before (or under)
the cursor.

33

Exploring Linux command-line tools
Performing Some Shell Command Tricks

history (continued)

Editing the command line (continued)

Change case

Pressing Esc and then U converts text from the cursor to the end of the word to
uppercase. Pressing Esc and then L converts text from the cursor to the end of the word
to lowercase. Pressing Esc and then C converts the letter under the cursor (or the first
letter of the next word) to uppercase, leaving the rest of the word unaffected.

34

Exploring Linux command-line tools
Performing Some Shell Command Tricks

history (continued)

These editing commands are just the most useful ones supported by bash history;
consult its man page to learn about many more obscure editing features. In practice,
you’re likely to make heavy use of command and filename completion, the command
history, and perhaps a few editing features.

The history command provides an interface to view and manage the history.

Typing history alone displays all the commands in the history (typically the latest 500
commands); adding a number causes only that number of the latest commands to
appear. Typing history -c clears the history, which can be handy if you’ve recently typed
commands you’d rather not have discovered by others (such as commands that include
passwords).

35

Exploring Linux command-line tools
Performing Some Shell Command Tricks

Exercise

Editing Commands

To experiment with your shell’s completion and command-line editing tools, follow these
steps:

1) Log in as an ordinary user.
2) Create a temporary directory by typing mkdir test.
3) Change into the test directory by typing cd test.
4) Create a few temporary files by typing touch one two three. This command creates
three empty files named one, two, and three.
5) Type ls -l t, and without pressing the Enter key, press the Tab key. The system may
beep at you or display two three. If it doesn’t display two three, press the Tab key again,
and it should do so. This reveals that either two or three is a valid completion to your
command, because these are the two files in the test directory whose filenames begin
with the letter t.

36

Exploring Linux command-line tools
Performing Some Shell Command Tricks

Exercise

Editing Commands (continued)

6) Type h, and again without pressing the Enter key, press the Tab key. The system
should complete the command (ls -l three), at which point you can press the Enter key to
execute it. (You’ll see information on the file.)
7) Press the Up arrow key. You should see the ls -l three command appear on the
command line.
8) Press Ctrl+A to move the cursor to the beginning of the line.
9) Press the Right arrow key once, and type es (without pressing the Enter key). The
command line should now read less -l three.
10) Press the Right arrow key once, and press the Delete key three times. The command
should now read less three. Press the Enter key to execute the command. (Note that you
can do so even though the cursor isn’t at the end of the line.) This invokes the less pager
on the three file. (The less pager is described more fully later, in “Getting Help.”) Because
this file is empty, you’ll see a mostly empty screen.
11) Press the Q key to exit from the less pager.

37

Exploring Linux command-line tools
Shortcuts

aliases

A bash alias is essentially nothing more than a keyboard shortcut, an abbreviation, a
means of avoiding typing a long command sequence. If, for example, we include:

in the ~/.bashrc file, then each lm typed at the command-line will automatically be
replaced by a ls -l | more. This can save a great deal of typing at the command-line and
avoid having to remember complex combinations of commands and options.

Setting alias rm="rm -i" (interactive mode delete) may save a good deal of grief, since it
can prevent inadvertently deleting important files.

alias lm="ls -l | more"

38

Exploring Linux command-line tools
Getting Help

apropos

apropos - search the manual page names and descriptions.

Each manual page has a short description available within it. apropos searches the
descriptions for instances of a keyword.

$ apropos grep

bzgrep (1) - search possibly bzip2 compressed files for a regular expression
egrep (1) - print lines matching a pattern
fgrep (1) - print lines matching a pattern
grep (1) - print lines matching a pattern
grep (1p) - search a file for a pattern
grep-changelog (1) - print ChangeLog entries matching criteria
msggrep (1) - pattern matching on message catalog
pgrep (1) - look up or signal processes based on name and other attributes
pm-utils-bugreport-info.sh (8) - Print pm-utils bug report
xzegrep (1) - search compressed files for a regular expression
xzfgrep (1) - search compressed files for a regular expression
xzgrep (1) - search compressed files for a regular expression
zgrep (1) - search possibly compressed files for a regular expression
zipgrep (1) - search files in a ZIP archive for lines matching a pattern

Introduction to Linux Shell

40

Exploring Linux command-line tools

FILE DESCRIPTORS

In Unix, a file descriptor (fd) is an abstract indicator (handle) used to access a file or other
input/output resource, such as a pipe or network socket.

Each Unix process should expect to have three standard POSIX file descriptors,
corresponding to the three standard streams

Integer
value Name <unistd.h> symbolic constant <stdio.h> file stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

41

Exploring Linux command-line tools

FILE DESCRIPTORS

Standard input (stdin)

Standard input is stream data going into a program. The program requests data transfers by use
of the read operation. Not all programs require stream input. For example, the ls program (which
display file names contained in a directory) may take command-line arguments, but perform their
operations without any stream data input. Unless redirected, standard input is inherited from the
parent process. In the case of an interactive shell, that is usually associated with the keyboard.

The file descriptor for standard input is 0 (zero); the POSIX <unistd.h> definition is
STDIN_FILENO; the corresponding C <stdio.h> variable is FILE* stdin; similarly, the C++
<iostream> variable is std::cin.

42

Exploring Linux command-line tools
FILE DESCRIPTORS

Standard output (stdout)

Standard output is the stream where a program writes its output data. The program requests data
transfer with the write operation. Not all programs generate output. For example, the file mv command
is silent on success. Unless redirected, standard output is inherited from the parent process. In the
case of an interactive shell, that is usually the text terminal which initiated the program.

The file descriptor for standard output is 1 (one); the POSIX <unistd.h> definition is STDOUT_FILENO;
the corresponding C <stdio.h> variable is FILE* stdout; similarly, the C++ <iostream> variable is
std::cout.

43

Exploring Linux command-line tools

FILE DESCRIPTORS

Standard error (stderr)

Standard error is another output stream typically used by programs to output error messages or
diagnostics. It is a stream independent of standard output and can be redirected separately. The usual
destination is the text terminal which started the program to provide the best chance of being seen
even if standard output is redirected (so not readily observed). For example, output of a program in a
pipeline is redirected to input of the next program, but errors from each program still go directly to the
text terminal.

The file descriptor for standard error is defined by POSIX as 2 (two); the <unistd.h> header file
provides the symbol STDERR_FILENO;[2] the corresponding C <stdio.h> variable is FILE* stderr.

44

Exploring Linux command-line tools
Using Streams, Redirection, and Pipes

Exploring Types of Streams

In short, these three are the most important ones for this topic:

Standard input
Programs accept keyboard input via standard input, or stdin. In most cases, this is the data that comes
into the computer from a keyboard.

Standard output
Text-mode programs send most data to their users via standard output (a.k.a. stdout), which is normally
displayed on the screen, either in a full-screen text-mode session or in a GUI window such as an xterm.

Standard error
Linux provides a second type of output stream, known as standard error, or stderr. This output stream is
intended to carry high-priority information such as error messages. Ordinarily, standard error is sent to
the same output device as standard output, so you can’t easily tell them apart. You can redirect one
independently of the other, though, which can be handy. For instance, you can redirect standard error to
a file while leaving standard output going to the screen so that you can interact with the program and
then study the error messages later.

45

Exploring Linux command-line tools
Redirection

Redirecting Input and Output

Input and Output of a command may be redirected before it is executed, using a special
notation, the redirection operators, interpreted by the shell.

Redirection operators:

< Read from

> Write to

>> Append to

| Pipe

46

Exploring Linux command-line tools
Redirection

Redirecting Input and Output (continued)

To redirect input or output, you use symbols following the command, including any
options it takes. For instance, to redirect the output of the echo command, you would
type something like this:

The result is that the file histcontrol.txt contains the output of the command. Redirection
operators exist to achieve several effects, as summarized in the next slide:

$ echo $HISTCONTROL > histcontrol.txt

47

Exploring Linux command-line tools
Redirection

Common Redirection Operators

Redirection
Operator

Effect

> Creates a new file containing standard output. If the specified file exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified file doesn’t exist, it’s created.

2> Creates a new file containing standard error. If the specified file exists, it’s overwritten.

2>> Appends standard error to the existing file. If the specified file doesn’t exist, it’s created.

&> Creates a new file containing both standard output and standard error. If the specified file
exists, it’s overwritten.

< Sends the contents of the specified file to be used as standard input

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and standard output.

48

Exploring Linux command-line tools
Redirection

PIPE (ALSO CALLED PIPELINE)

This is one of the most powerful tools of bash. A pipeline is a way in which the output (stdout) of
one command becomes the input (stdin) of a second command.

The stdout of command1 is the stdin of command2

The stdout, AND the stderr, of command1 is the stdin of command2

You can use the pipeline more than once in a command line:

The stdout of command1 is the stdin of command2 and the stdout of command2 is the stdin of
command3

command1 | command2

command1 |& command2

command1 | command2 | command3

49

Exploring Linux command-line tools
Redirection

PIPE (ALSO CALLED PIPELINE)

Example:

In this example, we run the command “ls -la /usr/bin”, which gives us a long listing of all of the
files in /usr/bin. Because the output of this command is typically very long, we pipe the output to a
program called “more”, which displays the output for us one screen at a time.

ls -la /usr/bin | more

50

Exploring Linux command-line tools
Redirection

Piping Data Between Programs (continued)

For instance, suppose that first generates some system statistics, such as system uptime, CPU
use, number of users logged in, and so on. This output might be lengthy, so you want to trim it a
bit.

You might therefore use second, which could be a script or command that echoes from its
standard input only the information in which you’re interested. The grep command is often used in
this role.

Pipes can be used in sequences of arbitrary length:

$ first | second | third | fourth | fifth | sixth [...]

51

Exploring Linux command-line tools
Processing Text Using Filters

Many simple commands are available to manipulate text. These commands accomplish tasks of
various types, such as combining files, transforming the data in files, formatting text, displaying
text, and summarizing data.

Combining Files with cat

The cat command’s name is short for concatenate, and this tool does just that: It links together
an arbitrary number of files end to end and sends the result to standard output.

By combining cat with output redirection, you can quickly combine two files into one:

Although cat is officially a tool for combining files, it’s also commonly used to display the contents
of a short file. If you type only one filename as an option, cat displays that file. This is a great way
to review short files; but for long files, you’re better off using a full-fledged pager command, such
as more or less.

$ cat first.txt second.txt > combined.txt

52

Exploring Linux command-line tools
Processing Text Using Filters

File-Transforming Commands (continued)

Sorting Files with sort

Sometimes you’ll create an output file that you want sorted. To do so, you can use a command
that’s called, appropriately enough, sort. This command can sort in several ways, including the
following:

Ignore case Ordinarily, sort sorts by ASCII value, which differentiates between uppercase and
lowercase letters. The -f or --ignore-case option causes sort to ignore case.

Month sort The -M or --month-sort option causes the program to sort by three-letter month
abbreviation (JAN through DEC).

Numeric sort You can sort by number by using the -n or --numeric-sort option.

53

Exploring Linux command-line tools
Processing Text Using Filters

File-Transforming Commands (continued)

Sorting Files with sort (continued)

Reverse sort order The -r or --reverse option sorts in reverse order.

Sort field By default, sort uses the first field as its sort field. You can specify another field with the
-k field or --key=field option. (The field can be two numbered fields separated by commas, to sort
on multiple fields.)

As an example, suppose you wanted to sort listing1.1.txt by first name. You could do so like this:

The sort command supports a large number of additional options, many of them quite exotic.
Consult sort’s man page for details.

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry
555-5116 Carter, Gertrude
555-9871 Orwell, Samuel
555-7929 Jones, Theresa

54

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands

Sometimes you just want to view a file or part of a file. A few commands can help you accomplish this
goal without loading the file into a full-fledged editor.

Viewing the start of files with head

Sometimes all you need to do is see the first few lines of a file. This may be enough to identify what a
mystery file is, for instance; or you may want to see the first few entries of a log file to determine when
that file was started. You can accomplish this goal with the head command, which echoes the first 10
lines of one or more files to standard output.

You can modify the amount of information displayed by head in two ways:

Specify the number of bytes The -c num or --bytes=num option tells head to display num bytes from
the file rather than the default 10 lines.

Specify the number of lines You can change the number of lines displayed with the -n num or --
lines=num option.

55

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Viewing the end of files with tail

The tail command works just like head, except that tail displays the last 10 lines of a file. (You can use
the -c/--bytes and -n/--lines options to change the amount of data displayed, just as with head.) This
command is useful for examining recent activity in log files or other files to which data may be
appended.

The tail command supports several options that aren’t present in head and that enable the program to
handle additional duties, including the following:

Track a file The -f or --follow option tells tail to keep the file open and to display new lines as they’re
added.

Some additional options provide more obscure capabilities. Consult tail’s man page for details.

56

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Paging through files with less

The less command’s name is a joke; it’s a reference to the more command, which was an early file
pager. The idea was to create a better version of more, so the developers called it less.

The idea behind less (and more, for that matter) is to enable you to read a file one screen at a time.
When you type less filename, the program displays the first few lines of filename. You can then page
back and forth through the file:

●Pressing the spacebar moves forward through the file one screen at a time.

●Pressing B moves backward through the file one screen at a time.

●Pressing D moves forward through the file half a screen at a time.

●Pressing U moves backward through the file half a screen at a time.

●The Up and Down arrow keys move up or down through the file one line at a time.

57

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Paging through files with less (continued)

●You can search the file’s contents by pressing the slash (/) key followed by the search term. Typing n
alone repeats the search forward, while typing N alone repeats the search backward.

●You can move to a specific line by typing g followed by the line number, as in 50g to go to line 50.

●You can move to an approximate percentage position of the file by typing g followed by the line
number, as in 50p to go to the 50% of the file.

●g will take you to the beginning of the file, while G will take you to the end of the file.

●When you’re done, type q to exit from the program.

58

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Extracting Text with cut

The cut command extracts portions of input lines and displays them on standard output. You can
specify what to cut from input lines in several ways:

By byte The -b list or --bytes=list option cuts the specified list of bytes from the input file. (The format
of a list is described shortly.)

By character The -c list or --characters=list option cuts the specified list of characters from the input
file.

By field The -f list or --fields=list option cuts the specified list of fields from the input file. By default, a
field is a tab-delimited section of a line, but you can change the delimiting character with the -d char, --
delim=char, or --delimiter=char option option, where char is the character you want to use to delimit
fields.

59

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Extracting Text with cut (continued)

The cut command is frequently used in scripts to extract data from some other command’s output. For
instance, suppose you’re writing a script and the script needs to know the hardware address of an
Ethernet adapter. This information can be obtained from the ifconfig command:
$ ifconfig eno2
eno2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.168.254 netmask 255.255.255.0 broadcast 192.168.168.255
 inet6 fe80::a6ba:dbff:fee1:4be7 prefixlen 64 scopeid 0x20<link>
 ether a4:ba:db:e1:4b:e7 txqueuelen 1000 (Ethernet)
 RX packets 23450459 bytes 2775486516 (2.5 GiB)
 RX errors 0 dropped 4 overruns 0 frame 0
 TX packets 2779622 bytes 365258758 (348.3 MiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 device interrupt 17

60

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Extracting Text with cut (continued)

Unfortunately, most of this information is extraneous for the desired purpose. The hardware address is
the 6-byte hexadecimal number following HWaddr. To extract that data, you can combine grep with
cut in a pipe:

Of course, in a script you would probably assign this value to a variable or otherwise process it
through additional pipes.

$ ifconfig eno2 | grep ether | cut -d" " -f10
a4:ba:db:e1:4b:e7

61

Exploring Linux command-line tools
Processing Text Using Filters

File-Viewing Commands (continued)

Obtaining a Word Count with wc

The wc command produces a word count (that’s where it gets its name), as well as line and byte
counts, for a file:

This file contains 308 lines (or, more precisely, 308 newline characters); 2,343 words; and 15,534
bytes. You can limit the output to the newline count, the word count, the byte count, or a character
count with the --lines (-l), --words (‑w), --bytes (-c), or --chars (-m) option, respectively. You can also
learn the maximum line length with the --max-line-length (-L) option.

$ wc file.txt
308 2343 15534 file.txt

Introduction to Linux Shell

63

Exploring Linux command-line tools
Permissions

First, let see what does it mean the information provided in a long listing:

$ ls -l -a /boot/
total 32660
drwxr-xr-x 4 root root 4096 Sep 9 12:17 .
drwxr-xr-x 23 root root 4096 Jul 16 2017 ..
-rw-r--r-- 1 root root 1725 May 24 2017 boot.readme
-rw-r--r-- 1 root root 191697 Jul 8 2017 config-4.11.8-1-default
drwxrwxr-x 3 root root 16384 Dec 31 1969 efi
drwxr-xr-x 7 root root 4096 Sep 9 12:17 grub2
lrwxrwxrwx 1 root root 23 Jul 16 2017 initrd -> initrd-4.11.8-1-default
-rw------- 1 root root 11187208 Sep 9 12:17 initrd-4.11.8-1-default
-rw-r--r-- 1 root root 1095036 Jul 8 2017 symtypes-4.11.8-1-default.gz
-rw-r--r-- 1 root root 381495 Jul 8 2017 symvers-4.11.8-1-default.gz
-rw-r--r-- 1 root root 484 Jul 8 2017 sysctl.conf-4.11.8-1-default
-rw-r--r-- 1 root root 3305559 Jul 8 2017 System.map-4.11.8-1-default
-rw-r--r-- 1 root root 9981850 Jul 8 2017 vmlinux-4.11.8-1-default.gz
lrwxrwxrwx 1 root root 24 Jul 16 2017 vmlinuz -> vmlinuz-4.11.8-1-
default
-rw-r--r-- 1 root root 7241840 Jul 8 2017 vmlinuz-4.11.8-1-default
-rw-r--r-- 1 root root 65 Jul 8 2017 .vmlinuz-4.11.8-1-default.hmac

long
listing

show invisible
files

directory

regular
file

symbolic link

invisible file

Destination of the
symbolic link

owner group Size in
bytes

Date
(last modified)

Permissions

file name

64

Exploring Linux command-line tools
Permissions

There are nine permission settings (also called bits). These settings are divided in three
groups of three each one:

-rw-r--r--

The first “bit” is for read, the second bit if for write and the third is for execute:

rwx

$ ls -l -a /boot/vmlinuz*
lrwxrwxrwx 1 root root 24 Jul 16 2017 /boot/vmlinuz -> vmlinuz-4.11.8-1-default
-rw-r--r-- 1 root root 7241840 Jul 8 2017 /boot/vmlinuz-4.11.8-1-default

Permissions

65

Exploring Linux command-line tools
Permissions

This:

rwx
can be expressed as a number. A binary number, or a decimal number. Since these
three letters are actually bits:

rwx is the same as 111 (binary) or 7 (decimal)

rw- is the same as 110 (binary) or 6 (decimal)

r-- is the same as 100 (binary) or 4 (decimal)

--- is the same as 000 (binary) or 0 (decimal)

--x is the same as 001 (binary) or 1 (decimal)

66

Exploring Linux command-line tools
Permissions

Permissions Decimal Description

rwxrwxrwx 777 All permissions for everybody (Dangerous!).

rw-r--r-- 644 Read and write for the owner. Read for everybody else. (Most
common for regular files).

r--r--r-- 444 Read only for everybody

rwxr-xr-x 755 Read and write and execute for the owner. Read and execute for
everybody else. (Most common for directories).

r-------- 400 Only the owner can read the file.

r--r----- 440 Only the owner and the group members can read the file.

r-xr-x--- 550 Only the owner and the group members can read and execute
the file.

--------- 000 No permissions for anybody

67

Exploring Linux command-line tools
Permissions

chmod

chmod is the command for modifying permissions (change file mode
bits).

Here there are some examples:

Command Description

chmod +x <FILE> Add execution permissions to file

chmod 777 <FILE> Add ALL permissions for everybody (Dangerous!)

chmod 755 <FILE> Read, write and execute for the owner, read and execute for
everybody else.

chmod 644 <FILE> Read and write for the owner, read-only for everybody else

68

Questions?

Introduction to Linux Shell

	First Slide Example
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

