How to Buy a Supercomputer for Scientific Computing Compute Ontario Colloquium

James Willis (SciNet)

April 17, 2024

James Willis (SciNet)

How to Buy a Supercomputer for Scientific Computing

April 17, 2024 1 / 27

Outline

- Motivation
- Performance Metrics
- SSI Metric
- Benchmark Applications
- File System Performance
- Summary

Motivation

- Choosing a new HPC system that suits the needs of our users is a very difficult decision
- How do we choose the hardware? AMD? Intel? Nvidia? DDN? VAST?
- What filesystem shall we use? What should the total storage be? 20PB? Minimum bandwidth performance?
- \bullet Do we want all CPU nodes? All GPU nodes? A combination of CPU + GPU nodes? What ratio then?
- How many total nodes?
- What interconnect should we use to connect the nodes? Infiniband? Slingshot? Dragonfly+?
- Will it fit our power budget?
- Will it fit in our current datacentre?
- How should we cool it? Fans? Liquid cooled? Direct? Immersion?

James Willis (SciNet)

April 17, 2024 3 / 27

Motivation

- What is the budget?
- How much does it cost to run? Power usage?
- How do we balance all of the above constraints and purchase the best possible system for our users?
- How do we compare new potential systems to decide the winner? What performance metric do we use?

Performance Metric

- We need a way to quantify how well a system performs
- A single performance metric that evaluates all aspects of the system which can be used to rank new potential systems
- Performance metrics exist that measure raw throughput
- High Performance Linpack (**HPL**) for example:
 - ► Solves a (random) dense linear system in double precision (64 bits)
 - Measures total FLOP/s (FLoating point OPerations per second)
 - ► Used to rank HPC systems on the Top500 list
- This metric is good to measure *raw* performance
- However, it is not representative of the vast majority of workloads run on our system

Performance Metric

- Another issue we face is that systems are becoming more heterogeneous when it comes to node types
- Every application will not necessarily run on each node type and if they do they might not perform well
- For example, on Niagara (CPU) and Mist (GPU) we have 2024 CPU nodes and 54 GPU nodes
- Therefore we need a metric that will:
 - ► Represent common workloads that will run on the system
 - ► Combine the performance of each node type that makes up the system

SSI Performance Metric

- The National Energy Research Scientific Computing center (NERSC) has developed such a metric
- Called the Scalable System Improvement (SSI) metric:

$$SSI = \langle w_i U_i S_i \rangle$$

- Where:
 - ► U is known as the *utilisation factor*
 - ► *S* is the *speedup factor*
 - ► w is the benchmark weight
 - *i* refers to each benchmark application
- SSI is computed as a mean over all benchmarks
- Lets go through each term in the equation

Utilisation Factor

• U_i is defined as:

$$U_i = rac{N/n_i}{N^{ref}/n_i^{ref}}$$

- Where:
 - ► *N* is the total no. of nodes in the system
 - n is the total no. of nodes used in the benchmark
 - *i* refers to each benchmark application
 - ► *ref* refers to a reference machine, e.g. Niagara
- The machine *utilisation* term was introduced to reward application throughput and system size relative to a reference system
- In other words if the proposed system can run the benchmark on a smaller fraction of the total system compared to the reference it will score higher

Speedup Factor

• S_i is defined as:

$$S_i = rac{t_i^{ref}}{t_i}$$

- Where:
 - ► *t* is the runtime of the benchmark (or other application-specific figure-of-merit such as time-per-iteration) e.g. s, FLOP/s, ns/day
 - *i* refers to each benchmark application
 - ► *ref* refers to a reference machine, e.g. Niagara
- This term is simpler, it's just the speedup of the benchmark running on the proposed system compared to the reference system, i.e. a newer system improves the time-to-solution
- This constraint is necessary because, for example, U could be maximised by running the benchmarks on the fewest number of nodes to avoid scaling inefficiencies
- This could lead to a system that sacrifices network performance for increased memory per ne

James Willis (SciNet)

Weights

- Each benchmark can be prioritised by setting optimal values for the weights, where $0 < w_i \leqslant 1$
- Say a benchmark represents a particular workload that takes up a large proportion of the jobs run on the system
- w_i can be set accordingly to increase the reliance of the SSI score on that benchmark

Mean Calculation

- We also have to decide on what type of mean calculation we use
- We have a few to choose from:
 - ► Arithmetic mean, to be used when performance metrics are in units of time e.g. s
 - ► Harmonic mean, to be used when performance metrics are expressed as a rate e.g. FLOP/s
 - ► Geometric mean, is best used when normalising against a specific baseline
- Geometric mean was chosen because we are normalising against Niagara as a baseline
- Calculation:

$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} = \sqrt[n]{x_1 x_2 \dots x_n}$$

• Where n in our case is the total number of benchmarks to run

Final Form

- For Niagara we equally weighted all benchmarks, i.e. set all $w_i = 1$
- This gives:

$$SSI = \langle U_i S_i \rangle = \left\langle \frac{N/n_i}{N^{ref}/n_i^{ref}} \frac{t_i^{ref}}{t_i} \right\rangle$$

Benchmark Applications

- To get a good representative SSI score for our system we need to choose a set of benchmarks carefully
- We can do this by looking at the current workloads running on Niagara and Mist
- The top workloads on Niagara are:
 - ► Matrix/Linear Algebra
 - Computational Fluid Dynamics (CFD)
 - Quantum Chemistry (Density Functional Theory DFT)
 - Molecular Dynamics
 - Atmospheric Research (Weather Forecasting)
- The top workloads on Mist are:
 - Molecular Dynamics
 - ► Machine Learning

Benchmark Applications

- Based on this list we chose the following benchmark applications:
 - 1) HPCG High Performance Conjugate Gradients
 - 2 NekRS
 - Quantum ESPRESSO OpEn-Source Package for Research in Electronic Structure, Simulation, and Optimization
 - 4 NAMD NAnoscale Molecular Dynamics
 - **5** WRF Weather Research and Forecasting Model
 - 6 SPEChpc 2021 Standard Performance Evaluation Corporation HPC
 - GROMACS (GPU) GROningen MAchine for Chemical Simulations
 - MLPerf (GPU) Machine Learning Performance Benchmark
- You can find the full list of benchmarks with instructions here: https://github.com/SciNetHPC/RFP-Benchmark-Suite
- Lets take a brief look at each application

HPCG

- The High Performance Conjugate Gradients benchmark is an open source project developed by Mike Heroux, Jack Dongarra and Piotr Luszcze
- Source: https://www.hpcg-benchmark.org
- It was designed to exercise computational and data access patterns that closely match a broad set of important scientific applications
- Features:
 - Sparse matrix-vector multiplication
 - ► Vector updates
 - ► Global dot products
 - ► Local symmetric Gauss-Seidel smoother
 - Sparse triangular solve (as part of the GS smoother)
 - Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels on a nested set of coarse grids
 - Written in C++ with MPI and OpenMP support

James Willis (SciNet)

How to Buy a Supercomputer for Scientific Computing

April 17, 2024 15 / 27

NekRS

- Open source, fast and highly scalable computational fluid dynamics (CFD) solver targeting HPC applications
- Developed at Argonne National Laboratory
- Source: https://github.com/Nek5000/nekRS

Figure 1: Taylor-Green Vortex simulated with NekRS

Features:

- ► Incompressible and low Mach-number Navier-Stokes + scalar transport
- ► High-order curvilinear conformal spectral elements in space
- ► Variable time step 2nd/3rd order semi-implicit time integration
- ► MPI + OCCA (backends: CUDA, HIP, OPENCL, SERIAL/C++)
- ► LES and RANS turbulence models
- Arbitrary-Lagrangian-Eulerian moving mesh
- Lagrangian phase model

James Willis (SciNet)

April 17, 2024 16 / 27

Quantum ESPRESSO

- Integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nanoscale
- Based on density-functional theory (DFT), plane waves, and pseudopotentials
- Source: https://www.quantum-espresso.org

Features:

- ► Written in Fortran with MPI + OpenMP, GPU version available
- PWscf: structural optimisation and molecular dynamics on the electronic ground state, with self-consistent solution of DFT equations
- ► CP: Car-Parrinello molecular dynamics
- PHonon: vibrational and dielectric properties from DFPT (Density-Functional Perturbation Theory)
- ► TD-DFPT: spectra from Time-dependent DFPT
- ► HP: calculation of Hubbard parameters from DFPT
- EPW: calculation of electron-phonon coefficients, carrier transport, phonon-limited superconductivity and phonon-assisted optical processes
- ► PWCOND: ballistic transport

James Willis (SciNet)

April 17, 2024 17 / 27

NAMD

- Parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems
- Highly scalable to 10^5 cores
- Developed at the University of Illinois
- Source: www.ks.uiuc.edu/Research/namd

Figure 2: Satellite Tobacco Mosaic Virus

- Features:
 - ► Written using the Charm++ parallel programming model
 - ► Support for GPUs
 - ► Constant temperature via rescaling, coupling, or Langevin dynamics
 - ► Constant pressure via Berendsen or Langevin Nose-Hoover methods
 - ► Particle mesh Ewald full electrostatics for periodic systems

WRF

- Open source Weather Research and Forecasting (WRF) Model
- Next-generation mesoscale numerical weather prediction system designed for both atmospheric research and operational forecasting needs
- Source: https://www.mmm.ucar.edu/models/wrf
- Features:
 - ► Written in Fortran with MPI + OpenMP
 - Meteorological studies
 - ► Real-time NWP (Numerical Weather Prediction)
 - Idealized simulations
 - Data assimilation
 - ► Earth system model coupling
 - Model training and educational support

SPEChpc

- The Standard Performance Evaluation Corporation SPEC maintains a standardized set of benchmarks and tools to evaluate performance for the newest generation of computing systems
- They offer well-selected science and engineering codes that are representative of HPC workloads and are portable across CPU and accelerators, along with certain fair comparative performance metrics
- $\bullet \ Source: \ https://www.spec.org/hpc2021$
- SPEChpc 2021 Large Workload Benchmark:
 - D2Q37 is a Computational Fluid Dynamics code for simulating 2D-fluids using the Lattice Boltzmann Method (LBM)
 - ► TeaLeaf is a mini-app that solves the linear heat conduction equation on a spatially decomposed regular grid using a 5 point stencil with implicit solvers
 - ► CloverLeaf is a mini-app that solves the compressible Euler equations on a Cartesian grid, using an explicit, second-order accurate method
 - POT3D computes potential field solutions used to approximate the 3D solar coronal magnetic field using observed photospheric magnetic fields as a boundary condition
 - High Performance Geometric Multigrid (HPGMG-FV) is a benchmark designed to proxy the finite-volume based geometric multigrid linear solvers found in adaptive mesh refinement (AMR) control
 - The miniWeather code mimics the basic dynamics seen in atmospheric weather and clima

GROMACS

- GROningen MAchine for Chemical Simulations is a versatile open source package used primarily for molecular dynamics simulations of biomolecules, such as proteins, lipids, and nucleic acids
- It is designed to perform simulations of large biomolecular systems with high efficiency on CPUs, GPUs, and specialized hardware
- Source: https://www.gromacs.org/
- Features:
 - Written in C++ with MPI + OpenMP
 - ► Support for GPUs
 - Energy minimization
 - Molecular dynamics simulations
 - ► Free energy calculations
 - ► Analysis tools for studying the dynamics and properties of biomolecules at the atomic level
 - Widely used in various fields such as biochemistry, biophysics, pharmaceutical research, and materials science

April 17, 2024 21 / 27

MLPerf

- MLPerf is an industry-standard benchmark suite for measuring the performance of machine learning tasks
- It is developed by MLCommons, a consortium of AI leaders from academia, research labs, and industry
- Source: https://mlcommons.org/

Benchmark Problem Sizes

- We made sure to choose problem sizes that were sufficiently large so that:
 - 1) They occupied a significant proportion of the RAM available on each node to test memory bandwidth
 - 2 The problem could be scaled up to high core counts
 - 3 There is enough work for sustained computation and we are not network bound
- To do this we performed strong-scaling tests to confirm scability

April 17, 2024 23 / 27

File System Performance

- So far we have tested the system for memory, compute and network performance
- But if we can't get data to/from the compute nodes in a timely manner this is irrelevant
- The other major component that we need to consider is the *file system*
- We measure this with by looking at bandwidth, i.e. GB/s and IOPS performance, i.e. Input/Output Operations Per Second
- The IOR benchmark comes in handy here

IOR Benchmark

- Interleaved Or Random is an open source benchmark for testing the performance of parallel storage systems
- It uses various interfaces and access patterns to excercise the file system by reading/writing files in parallel
- List of backends:
 - ► POSIX (default)
 - MPIIO
 - ► HDF5
 - ► HDFS
 - ► S3

- Features:
 - ► Uses a common parallel IO abstraction backend and MPI for process synchronisation
 - ► Can modify block size, files per process, transfer size, segment size, memory allocated
 - ► Can modify file access patterns to mimic application workloads, e,g. file offsets, random ac

Summary

- We looked at the considerations that go into to buying a new supercomputer
- We described the SSI metric for measuring supercomputer performance
- Listed our benchmark suite for the refresh of Niagara
- Also looked at measuring file system performance
- Please email any questions to: support@scinet.utoronto.ca

References

• SSI:

 $https://sc18.supercomputing.org/proceedings/workshops/workshop_files/ws_pmbsf117s2-file1.pdf$

- NekRS: https://www.researchgate.net/publication/335147096_ECP_Milestone_Report_Public_ release_of_CEED_20
- NAMD: https://en.wikipedia.org/wiki/Tachyon_(software)
- IOR: https://ior.readthedocs.io/en/latest/userDoc/tutorial.html#first-steps

