Distributed Parallel Programming with MPI - part 2

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 1/33

Communication patterns in MPI

Distributed Parallel Programming with MPI - part 2

PHY1610

ter 2024

2/33

Pairwise communication
count of MPI_SOMETYPE

tag
¢ |

git clone /scinet/course/phy1610/mpi

cd mpi

source setup

mpicxx -02 -std=c++17 -march=native -o firstmessage firstmessage.cpp
or: make firstmessage

mpirun -n 2 firstmessage

Received 111.000000 on 1

Sent 111.000000 from O

P BH B PH P P

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 3/33

Pairwise communication

// firstmessage.cpp
#include <iostream>
#include <string>
#include <mpi.h>
int main(int argc, char **xargv) {
int rank, size;
double msgsent, msgrcvd;
MPI_Status rstatus;
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
msgsent = 111.;
msgrcvd = -999.;
if (rank == 0) {
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, 1, 746, MPI_COMM_WORLD) ;
std::cout << "Sent " + std::to_string(msgsent) + " from " + std::to_string(rank) + "\n";
}
if (rank == 1) {
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, O, 746, MPI_COMM_WORLD, &rstatus);
std::cout << "Received " + std::to_string(msgrcvd) + " on " + std::to_string(rank) + "\n";
}
MPI_Finalize();

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 4/33

Send a message to the right
0 I 2

_—

_——

Send Send

Ramses van Zon Distributed Parallel Programming with MPI - part 2

Send a message to the right

0 I 2
® @ ®
Send Send

Helpful specials

® Special Source/Destination:

MPI_PROC_NULL basically ignores the relevant operation; can lead to cleaner code.

® Special Source MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source when receiving.

® Special Status MPI_STATUS_IGNORE

Use MPI_STATUS_IGNORE if you do not want to capture the status in a receive.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 5/33

Send a message to the right

// secondmessage.cpp
#include <iostream>
#include <string>
#include <mpi.h>

int main()

{
int rank, size, left, right;
double msgsent, msgrcvd;
MPI_Init(nullptr, nullptr);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
left = rank - 1;
if (left < 0) left = MPI_PROC_NULL;
right = rank + 1;
if (right >= size) right = MPI_PROC_NULL;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, 746, MPI_COMM_WORLD) ;
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, 746, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n";
MPI_Finalize();
¥

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 6/33

MPI: Send Right, Receive Left

€@ = O N & &

W N~ O U e

make secondmessage
mpirun -n 3 ./secondmessage

: Sent
¢ Sent
: Sent

4.000000 and got 1.000000
0.000000 and got -999.000000
1.000000 and got 0.000000

mpirun -n 6 ./secondmessage

Sent
Sent
Sent
Sent
Sent
Sent

16.000000 and got 9.000000
25.000000 and got 16.000000
0.000000 and got -999.000000
1.000000 and got 0.000000
4.000000 and got 1.000000
9.000000 and got 4.000000

Ramses van Zon Distributed Parallel Programming with MPI - part 2

SciNet

PHY1610 Winter 2024

7/33

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

_—

Send Send

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610

ter 2024 8/33

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

Sen
0 | 2
@ @ @

Send Send

left = rank - 1;

if (left < 0) left = size-1; // Periodic BC
right = rank + 1;

if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;

msgrcvd = -999.;

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 8/33

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

Sen
0 | 2
@ @ @

Send Send

$ make thirdmessage

left = rank - 1; $ mpirun -n 3 ./thirdmessage

if (left < 0) left = size-1; // Periodic BC
right = rank + 1;

if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;

msgrcvd = -999.;

Scite

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 8/33

MPI: Send Right, Receive Left with Periodic BCs

Periodic Boundary Conditions:

Sen
0 | 2
@ @ @

Send Send

$ make thirdmessage

left = rank - 1; $ mpirun -n 3 ./thirdmessage

if (left < 0) left = size-1; // Periodic BC
right = rank + 1;

if (right >= size) right =0; // Periodic BC
msgsent = rank*rank;

msgrcvd = -999.;

Program hangs!

Scite

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 8/33

Deadlock!

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 9/33

Deadlock!

e A classic parallel bug.
e Occurs when a cycle of tasks are waiting for Sen
the others to finish.
0 I 2
® Whenever you see a closed cycle, you likely . . .
have (or risk) a deadlock. e
Send Send
e Here, all processes are waiting for the Ssend to

complete, but no one is receiving.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 9/33

Deadlock!

e A classic parallel bug.

® Occurs when a cycle of tasks are waiting for Sen
the others to finish.
0 I 2
® Whenever you see a closed cycle, you likely . . .
have (or risk) a deadlock. e

Send Send
e Here, all processes are waiting for the Ssend to
complete, but no one is receiving.

Sends and receives must be paired when sending!

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 9/33

How do we fix the deadlock?

How could we fix the deadlock?

Ramses van Zon Distributed Parallel Programming with MPI - part 2 10/33

How do we fix the deadlock?

How could we fix the deadlock?

Even-odd solution

0 I 2 3
@ @ @ @
Send Recv Send Recv

(| 2 ?
@ @ @
Recy Send Recv Send

e First: evens send, odds receive
e Then: odds send, evens receive
e Will this work with an odd number of processes? How about 27 17

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 10/33

MPI: Send Right, Recv Left with Periodic BCs - fixed

if ((rank % 2) == 0) {
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, 746, MPI_COMM_WORLD) ;
MPI_Recv(&msgrcvd, 1, MPI_DOUBLE, left, 746, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {
MPI_ReCV(&msgrcvd, 1, MPI_DOUBLE, left, 746, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Ssend(&msgsent, 1, MPI_DOUBLE, right, 746, MPI_COMM_WORLD) ;

$ make fourthmessage

$ mpirun -n 5 ./fourthmessage

1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

SciNet

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 11/33

MPI: Sendrecv

This kind of exchange is so common and always runs the risk of deadlock, so the MPI standard has a
function for that to deal with this scenario.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 12/33

MPI: Sendrecv

This kind of exchange is so common and always runs the risk of deadlock, so the MPI standard has a
function for that to deal with this scenario.

MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 12/33

MPI: Sendrecv

This kind of exchange is so common and always runs the risk of deadlock, so the MPI standard has a
function for that to deal with this scenario.
MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)
e A blocking send and receive built together.

® |ets them happen simultaneously.

e Can automatically pair send/recvs.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 12/33

Send Right, Receive Left with Periodic BCs - Sendrecv

Code

MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, 746,
&msgrcvd, 1, MPI_DOUBLE, left, 746, MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;

Execution

$ make fifthmessage

$ mpirun -n 5 ./fifthmessage

1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000
3: Sent 9.000000 and got 4.000000
4: Sent 16.000000 and got 9.000000
0: Sent 0.000000 and got 16.000000

Scitle

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 13/33

Send/Recv code

// fifthmessage.cpp
#include <iostream>
#include <string>
#include <mpi.h>
int main() {
int rank, size, left, right;
double msgsent, msgrcvd;
MPI_Init(nullptr, nullptr);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
left = rank-1;
if (left < 0) left = size-1;
right = rank+1;
if (right >= size) right = 0;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, 749,
&msgrcvd, 1, MPI_DOUBLE, left, 749,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n";
MPI_Finalize();

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 14 /33

MPI Reductions

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 15/33

Reductions: Min, Mean, Max Example

Calculate the min/mean/max of random
numbers -1.0 ... 1.0
Should trend to -1/0/+1 for a large N. .
(min,mean, max)
How to MPI it?
Partial results on each node, collect all to node ./(mivn,mean,max)o

0

(min,mean,max)2

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 16 /33

Reductions: Min, Mean, Max Example (1/2)

// Computes the min,mean&max of random numbers
#include <mpi.h>

#include <iostream>

#include <algorithm>

#include <random>

#include <rarray>

int main()

{

const long nx = 200'000'000;

// find this process place

int rank;

int size;

MPI_Init(nullptr, nullptr);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

// determine its subrange of data

const long nxper=(nx+size-1)/size;

const long nxstart=nxper*rank;

const long nxown=(rank<size-1)?nxper
: (nx-nxper*(size-1));

rvector<double> dat (nxown) ;

std::uniform_real_distribution<double>

uniform(-
std::minstd_

1.0,1.0);
rand engine(14);

// each process skip ahead to start

std::engine.

// compute 1
for (long i=
dat[i] =

discard(nxstart);
ocal data
0;i<nxown;i++)
uniform(engine) ;

const long MIN=0, SUM=1, MAX=2;
rvector<double> mmm(3);

mmm = le+19,
for (long i=
mmm [MIN]
mmm [MAX]
mmm [SUM]
}

0, -1le+19;
0;i<nxown;i++) {

= min(dat[i], mmm[MIN]);
= max(dat[i], mmm[MAX]);
+= dat[i];

// send results to a collecting rank

const long c
if (rank !=

ollectorrank = 0;
collectorrank)

MPI_Ssend (mmm.data(), 3,MPI_DOUBLE,
collectorrank, 749,

else {

Ramses van Zon Distributed Parallel Programming with MPI - part 2

MPI_COMM_WORLD) ;

PHY1610 Winter 2024

17/33

Reductions: Min, Mean, Max Example (1/2)

rvector<double> recvmmm(3);
for (long i = 1; i < size; i++) {
MPI_Recv(recvmmm.data(), 3,
MPI_DOUBLE,
MPI_ANY_SOURCE, 749,
MPI_COMM_WORLD,
MPI_STATUS_IGNORE) ;
mmm [MIN] = min(recvmmm[MIN],

mmm [MIN]) ;
mmm [MAX] = max(recvmmm[MAX],
mmm [MAX]) ;
mmm [SUM] += recvmmm[SUM] ;
}
// output

std::cout << "Global Min/mean/max "
<< mmm[MIN] << " "
<< mmm[SUM] /nx <<" "
<< mmm[MAX] << "\n";
}
MPI_Finalize();)
) Scifet

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 18 /33

Efficiency?

CPUI1 CPU2 CPU3 CPU4

® Requires (P-1) messages . '
Sum

e 2(P-1) if everyone then needs to get the
answer.

Suim Sum Sum

b

Sum

Teomm — PCcomm Sum

Sum

sSum

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 19/33

Better Summing

e Pairs of processors; send partial sums CPU1 CPU2 CPUR CPU4
e Max messages received log, (P)
e Can repeat to send total back. sum sum sum sum
ar ‘l’ \"Al;
Tcomm = 10g2 (P)Ccomm sum S

g ¥
total

Reduction: Works for a variety of operations (+,* min,max)

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 20/33

MPI Collectives it 4

MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator);

MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);

Bl At [l & s

e sendptr/rcvptr: pointers to buffers

e count: number of elements in ptrs

e MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
e MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.

e Communicator: MPI_COMM_WORLD or user created.

® The “A11" variant sends result back to all processes; non-A11 sends to process root.
h ol T \E I

Ly

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 21/33

Reductions: Min, Mean, Max with MPI Collectives

rvector<double> globalmmm(3) ;
MPI_Allreduce (&mmm[MIN], &globalmmm[MIN], 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[MAX], &globalmmm[MAX], 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[SUM], &globalmmm[SUM], 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;
if (rank==0)
std::cout << "Global Min/mean/max
<< mmm[MIN] << " "
<< mmm[SUM] /nx << " "
<< mmm[MAX] << endl;

"

Scifet

ETHELCRTER AT Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 22/33

More Collective 7 li-ations

]

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

All processes in the communicator must participate.

* Don't necessarity know what's ‘under the hood".
qA ﬂi

‘v.

Cannot proceed until all have participated.

-
; e dry

Ramses van Zon Distributed Parallel Programming with MPI - part 2

PHY1610 Winter 2024

23/33

More Collective 7 li-ations

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

All processes in the communicator must participate.

Cannot proceed until all have participated.

Don't necessarity know what's ‘under the hood'.

E=n = o g T
SR el R

Other MPI Collectives

Broadcast

VP _Bcast

@I
©o @n @r @-

Ramses van Zon Distributed Parallel Programming with MPI - part 2

PHY1610 Winter 2024

23/33

More Collective 7 li-ations

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

All processes in the communicator must participate.

Cannot proceed until all have participated.

Don't necessarity know what's ‘under the hood'.

A L T e
b T L

Other MPI Collectives

Broadcast Scatter

VP _Bcast MPI_Scatter

@I @II
OLNOLEOLNOLNOINOLROLEO.

Ramses van Zon Distributed Parallel Programming with MPI - part 2

PHY1610 Winter 2024

23/33

More Collective 7 y-ations

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

All processes in the communicator must participate.

Cannot proceed until all have participated.

Don't necessarity know what's ‘under the hood'.

AL m L ol L
Other MPI Collectives
Broadcast Scatter Gather
VP _Bcast MPI_Scatter WMPI_Gather

®- O= O 0- 00
©+ O O O O- O O+ @ ol=

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024

23/33

More Collective 7 y-ations

Collective

Reductions are an example of a collective operation.

® As opposed to the pairwise messages we've seen before

® All processes in the communicator must participate.

e Cannot proceed until all have participated.

Don't necessarity know what's ‘under the hood".

! AT B m o ST
Other MPI Collectives
Broadcast Scatter Gather
Even more:

VP _Bcast MPI_Scatter WMPI_Gather

@- @..- @. @ ®. @ « File 1/0

® Barriers (avoid!)

@l @I @l @l @- @ @I @ @n e All-to-all ...

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 23/33

MPI| Domain decomposition

Scifet

ETHELCRTER AT Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 24 /33

Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.

Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 25/33

Discretizing Derivatives

e Partial Differential Equations like the diffusion T Ty —2T;+ T,

equation 9x2 Ax?

_0/0/0]

are usually numerically solved by finite
differencing the discretized values.

e Implicitly or explicitly involves interpolating . . .
data and taking the derivative of the

interpolant.

e Larger ‘stencils’ — More accuracy.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 26/33

Diffusion equation in higher dimensions
Spatial grid separation: Ax. Time step At.

Grid indices: 1, j. Time step index: (n)
1D
oT T('"') _ T.("_l)
or| TV -1 00
ot |; At
62T (n) 2T(") 4L Tz(-:j)l
ox? |; = Ax?

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 27/33

Diffusion equation in higher dimensions
Spatial grid separation: Ax. Time step At.

Grid indices: 1, j. Time step index: (n)

at |, At
(n) (n) | () vl =2
9*T| T -2 + T4
ox? |; = Ax?
+1

e
Ramses van Zon Distril Parallel F ing with MPI - part 2 PHY1610 Winter 2024 27/33

Diffusion equation in higher dimensions

Spatial grid separation: Axz. Time

Grid indices: 1, j.

step At.

Time step index: (n)

1D
or) i g oo
oy L T
at |; At
| T —am 1)
ox? |; Ax?
2D
or| TP -TiTY
e atl,; At
*e o (22,27 - T + T — 4T3 + T, + T
. Ramses van Zon Ox? 8y2 Disfributed Parallel Programming with MPI-partAmz PHY1610 Winter 2024

27/33

Stencils and Boundaries
e How do you deal with 1D

. EEENN

e The stencil juts out, you need
info on cells beyond those

o Number of guard cells
you're updating.

ng =1

. ® Loop from
e Common solution: i=mng.N — 2n,.

Guard cells:

» Pad domain with these
guard celss so that stencil
works even for the first
point in domain.

> Fill guard cells with values
such that the required
boundary conditions are
met.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 28/33

Stencils and Boundaries
o How do you deal with 1D

o TEEEEEE IIIIIII

e The stencil juts out, you need "

info on cells beyond those o Number of guard cells
you're updating. ng =1

_ e Loop from
o Common solution: i=mn,.N —2n,.

Guard cells:

» Pad domain with these
guard celss so that stencil
works even for the first
point in domain.

» Fill guard cells with values
such that the required
boundary conditions are
met.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 28/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

Scite

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 29/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 29/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

Ramses van Zon Distributed Parallel Programming with MPI - part 2

PHY1610 Winter 2024

29/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

e No process contains the full
datal

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 29/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

e No process contains the full
datal

e Maintains locality.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 29/33

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

e No process contains the full
datal

e Maintains locality.

e Need mostly local data, ie.,
only data at the boundary of

each subdomain will need to
be sent between processes.

Ramses van Zon

ing with MPI - part 2

011

111

1BBY1610 Wintey2p24

Guard cell exchange

e In the domain decomposition, the stencils will
jut out into a neighbouring subdomain.
e Much like the boundary condition.

® One uses guard cells for domain decomposition
too.
e Could use even/odd trick, or sendrecv.
e |f we managed to fill the guard cell with values
from neighbouring domains, we can treat each
coupled subdomain as an isolated domain with
changing boundary conditions.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 30/33

1D diffusion with MPI

Before MPI

a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[il;
I

Schiet

PHY1610 Winter 2024 31/33

Ramses van Zon Distributed Parallel Programming with MPI - part 2

1D diffusion with MPI

Before MPI

a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[il;
I

After MPI

MPI_Init(&argc,&argv) ;

MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;

MPI_Comm_size (MPI_COMM_WORLD,&size) ;

left = rank-1; if(left<0)left=MPI_PROC_NULL;

right = rank+1l; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;

a = 0.25%dt/pow(dx,2);

guardleft = 0;

guardright = localn+1;

for (int t=0;t<maxt;t++) {

MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,
&T[guardright] ,1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

MPI_Sendrecv(&T[nlocall], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;

if (rank==size-1) T[guardright] = 0.0;

for (int i=1; i<=localn; i++)

newT[i] = T[i] + ax(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];

Ramses van Zon Distributed Parallel Programyning with MPI - part 2 PHY1610 Winter 2024 31/33

1D diffusion with MPI

Before MPI

a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[il;
I

Note:

e the for-loop over i could also have been a call

to dgemv for a submatrix.

e the for-loop over i could also easily be
parallelized with OpenMP

After MPI

MPI_Init(&argc,&argv) ;

MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;

MPI_Comm_size (MPI_COMM_WORLD,&size) ;

left = rank-1; if(left<0)left=MPI_PROC_NULL;

right = rank+1l; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;

a = 0.25%dt/pow(dx,2);

guardleft = 0;

guardright = localn+1;

for (int t=0;t<maxt;t++) {

MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,
&T[guardright] ,1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

MPI_Sendrecv(&T[nlocall], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;

if (rank==size-1) T[guardright] = 0.0;

for (int i=1; i<=localn; i++)

newT[i] = T[i] + ax(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];

/7 o . RamseswvanmZom ~ o~ \ Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 31/33

2D diffusion with MPI

How to divide the work in 2d?

Ramses van Zon Distributed Parallel Programming with MPI - part 2 024

2D diffusion with MPI

How to divide the work in 2d?

® Less communication (18 edges).

e Harder to program, non-contiguous data to
send, left, right, up and down.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2024 32/33

2D diffusion with MPI

How to divide the work in 2d?

® Less communication (18 edges).

e Harder to program, non-contiguous data to
send, left, right, up and down.

e Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.

e More communication (30 edges).

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 32/33

Let’s look at the easiest domain decomposition.

Ramses van Zon Distributed Parallel Programming with MPI - part 2

Let’s look at the easiest domain decomposition.

Serial:

024 33/33

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Win

Let's look at the easiest domain decomposition.

Serial: Parallel (P = 3):
EEEEEERE EEEEEEEE
TEEEEEET
EREEEEER
B n
N | ([=
n n
HEEEEEEE
HEEEEEEE
HEEEEEEEN
' AEEEEn

Ramses van Zon Distril Parallel P ing with MPI - part 2 PHY1610 Winter 2024 33/33

Let's look at the easiest domain decomposition.

Serial: Parallel (P = 3):
HEEEEEEE HEEEEEEE
"EEEEEET TEEEEEET
N] “HEEEEn
=......= HEEEEEEEE
=.-.I.I= HEEEEEEE

HEEEEEEE

]]]

]

Communication pattern: BHEEEEEEE

e Copy upper stripe to upper neighbour bottom guard cell.

e Copy lower stripe to lower neighbout top guard cell. B B

e Contiguous cells: can use count in MPI_Sendrecv. T T
e Similar to 1d diffusion.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 024 33/33

	Communication patterns in MPI
	MPI Reductions
	MPI Domain decomposition

