
Parallel Debugging with DDT

James Willis (SciNet)

March 25, 2024

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 1 / 55

Outline
Software Bugs

What is Debugging?

Symbolic Debuggers

What is DDT?

Setting up DDT on Teach
I Hello-mpi Hands-on

Matrix-Matrix Multiply Hands-on Example

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 2 / 55

Outline

Other Useful Features of DDT
I Client-Server Mode
I Attach Mode
I Submitting Jobs to a Scheduler
I Running Core Files

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 3 / 55

Software Bugs

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 4 / 55

Software Bugs

Writing clean, efficient, error-free code is nearly impossible

At some point you will run into situations such as:
I Compile time errors
I Segmentation faults

laptop:~$ gcc app.c -o app
laptop:~$./app
Segmentation fault

I Your code doesn’t do what you expect
I Incorrect results

These are all examples of what is known as a software bug

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 5 / 55

Common Symptoms

Compile time errors
I Code syntax errors (easy to fix)
I Linker errors when linking against libraries
I Cross-compilation, i.e. compiling for a different computing architecture compared to the host
I Compilation warnings

Always turn compiler warnings on and fix or understand them before running your code! It
will save you future headaches.

But just because it compiles does not mean it is correct!

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 6 / 55

Common Symptoms

Runtime errors
I Floating point exceptions
I Segmentation faults
I Aborted
I Incorrect output (e.g. NaNs, Inf)

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 7 / 55

Error Examples

Type Reason
Arithmetic Corner cases e.g. sqrt(-0.0), infinities
Memory Access Index out of range, uninitialised pointers
Logic Infinite loop, corner cases
Misuse Wrong input, ignored error, no initialisation
Syntax Wrong operators/arguments
Resource Starvation Memory leak, quota exceeded
Parallel Race conditions, deadlock

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 8 / 55

What is going on?

Almost always, a condition you are sure is satisfied, is not
But your application likely relies on many such assumptions

First order of business is finding out what is going wrong and what assumption is not warranted

Follow the Fundamental Principle of Confirmation:
I Process of confirming, one by one, that many things you believe to be true about the code are actually

true

Debugger: program to help detect errors in other programs

Debugging: Methodical process of finding and fixing flaws in software

You are the real debugger

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 9 / 55

How to Avoid Debugging

Write better code:
I Simple, clear, straightforward code
I Modular (no global variables or 10,000 line functions)
I Avoid “cute” tricks (no obfuscated C code winners)

Improve your code/algorithm/language/API understanding
Don’t reinvent the wheel, use existing libraries

Write (simple) tests for each part of your code
Use version control (GIT) so you can “roll back” your code if a bug is found

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 10 / 55

Debugging Workflow

As soon as you are convinced there is a real problem, create the simplest test case that reproduces
the bug

This is science: model, hypothesis, experiment, conclusion

Try a smaller problem size, turning off physical effects with options, etc. until you have a simple, fast
repeatable example of the bug

Try to narrow it down to a particular module/function/class. For Fortran, switch on bounds checking
(-fbounds-check)

Now you’re ready to start debugging

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 11 / 55

Ways to Debug

Preemptive:
I Turn on compiler warnings: fix or understand them!

laptop:~$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert)

Inspect the exit code and read the error messages!

Use a debugger

Add print statements
I No way to debug!

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 12 / 55

What’s wrong with using print statements?
Strategy

Constant cycle:
1 Strategically add print statements
2 Compile
3 Run
4 Analyse output

Bug not found? Repeat from 1. again

Have to remove extra code after the bug is fixed

Rinse and repeat for each bug

Disadvantages

Time consuming
Error prone
Changes memory, timing. . .

There’s a better way!

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 13 / 55

Symbolic Debuggers

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 14 / 55

Symbolic Debuggers

Features
1 Crash inspection
2 Function call stack
3 Step through code
4 Automated interruption
5 Variable checking and setting

Use a graphical debugger or not?

Local work station: graphical is convenient
Remotely (Niagara): can be slow, but we will look at ways to improve this later

In any case, graphical and text-based debuggers use the same concepts

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 15 / 55

Preparing Your Code for the Debugger

Add debugging flags when compiling your code:
laptop:~$ gcc/g++/gfortran -g [-gstabs]
laptop:~$ icc/icpc/ifort -g [-debug parallel]
laptop:~$ nvcc -g -G

Optional flag: switch off optimisation -O0 (sometimes symbol values are hidden to the debugger at
higher optimisation levels e.g. -O2, -O3)

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 16 / 55

Examples of Symbolic Debuggers

Command-line based debuggers: GDB, LLDB

Graphical based debuggers: DDT, Visual Studio, Eclipse
I Nice, more intuitive graphical user interface
I Front-end to command-line based tools: Same concepts
I Need graphics support: X11 forwarding (or VNC)

The rest of the workshop will focus on DDT

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 17 / 55

What is DDT?

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 18 / 55

What is DDT?
DDT stands for Distributed Debugging
Tool

Powerful GUI-based commercial debugger by
Linaro

Developed for debugging parallel,
multi-threaded, and distributed applications

Widely used in high-performance computing
environments

Available on Niagara and other Alliance
systems (Note: license only allows debugging
up to 64 processes)

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 19 / 55

DDT Features

Key Features:
I Parallel and distributed debugging capabilities
I Graphical user interface for intuitive navigation
I Support for multiple programming languages (e.g. C, C++, Fortran, Python)
I Supports MPI, OpenMP, threads, CUDA, ROCm and more
I Integrated performance analysis tools - MAP
I Memory debugging functionalities

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 20 / 55

Launching DDT on Teach

Load the latest software stack with a compiler and MPI module:
teach-login01:~$ module load TeachEnv/2022a gcc openmpi

Load DDT:
teach-login01:~$ module load ddt

Start DDT with one of these commands:
teach-login01:~$ ddt
teach-login01:~$ ddt <exe compiled with -g flag>
teach-login01:~$ ddt <exe compiled with -g flag> <arguments>
teach-login01:~$ ddt -n <numprocs> <exe compiled with -g flag> <arguments>

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 21 / 55

Launching DDT on Teach

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 22 / 55

Creating a Debug Session

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 23 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 24 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 25 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 26 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 27 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 28 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 29 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 30 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 31 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 32 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 33 / 55

User Interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 34 / 55

DDT Setup Demonstration

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 35 / 55

Hands-on hello-mpi Example
Login to Teach
laptop:~$ ssh -X USERNAME@teach.scinet.utoronto.ca

Load compilers, MPI library and ddt:
teach-login01:~$ module load TeachEnv/2022a gcc openmpi ddt

Copy examples from the course directory:
teach-login01:~$ cp -r /home/l/lcl_uothpc245/hpc245starter/ddt-examples .

Compile MPI Hello World example, hello-mpi.c:
teach-login01:~/ddt-examples/ddt-hello-mpi$ mpicc -g hello-mpi.c -o hello-mpi

Run ddt:
teach-login01:~/ddt-examples/ddt-hello-mpi$ ddt -n <numprocs> hello-mpi

Experiment with different features of DDT

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 36 / 55

Memory Debugging in DDT

Memory debugging can be turned on in the Run window

Causes the code to stop on an error i.e. memory corruption/leak

Allows you to check the pointer where the memory corruption has occurred

Can give an overall view of the memory stats/usage

Lets look at a real example

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 37 / 55

Matrix-Matrix Multiply Example

Imagine we want to compute the result of this Matrix equation in parallel with MPI:

C = A ∗ B + C

The algorithm works as follows:
1 Rank 0 initialises A, B and C
2 Rank 0 sends the entire matrix B, with slices of A and C to all other ranks
3 Each rank performs matrix multiplication on their domain and computes a slice of C
4 Rank 0 collects the slices of C from each rank and forms the final matrix C
5 Rank 0 writes C to a file

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 38 / 55

Matrix-Matrix Multiply Example

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 39 / 55

Hands-on Matrix-Matrix Multiply
Change to the ddt-mmult directory from the course examples and compile the code:
teach-login01:~/ddt-mmult$ make

This will build C and Fortran executables with -g -O0 named mmult_c and mmult_f

The example can then be run with:
teach-login01:~/ddt-mmult$ mpirun -np 4 ./mmult_c

For python, load a python module and compile the C and Fortran libraries with:
teach-login01:~/ddt-mmult$ module load python/3.11.5
teach-login01:~/ddt-mmult$ make -f mmult_py.makefile

You will also need a python virtual environment with the mpi4py package. I have created one here:
/home/l/lcl_uothpc245/hpc245starter/.virtualenvs/mpi4py-TeachEnv2022-openmpi

I source the virtual environment before running the example:
source $HOME/../hpc245starter/.virtualenvs/mpi4py-TeachEnv2022-openmpi/bin/activate
mpirun -np 4 python ./mmult.py

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 40 / 55

Hands-on Matrix-Matrix Multiply
Try running the code. What output do you get?

Run the code in DDT to find out what the error is

Note: if running with python you will need the setup shown below

or from the command line:
teach-login01:~/ddt-mmult$ ddt -n 4 python %allinea_python_debug% ./mmult.py

Can you locate the error?

Can you fix it?

Hints: Try running with memory debugging enabled and make sure Add guard pages is enabled

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 41 / 55

Matrix-Matrix Multiply
Demonstration

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 42 / 55

Other Useful Features of DDT

Client-Server mode

Editing and recompiling code from within DDT GUI

Attaching to a running job

Submit SLURM jobs with DDT

Running with core files

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 43 / 55

Client-server Mode

This mode can be very beneficial if you have a slow internet connection

Keeps the bulk of the computation on Teach (server)

Only sends minimal amounts of information (network traffic) to your locally running version of DDT
(client)

Results in a much smoother experience, avoids slow/laggy interface

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 44 / 55

Client-server Mode Setup

Setting up the server side

Connect to Teach and create a startup script which will be run by the server and load the modules
that your code needs:
#!/bin/bash
module purge
module load TeachEnv/2022a
module load forge/23.0.2
module load gcc openmpi python
export ARM_TOOLS_CONFIG_DIR=${SCRATCH}/.arm
mkdir -p ${ARM_TOOLS_CONFIG_DIR}

Name it ddt_remote_setup.sh and place it in $SCRATCH

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 45 / 55

Client-server Mode Setup
Setting up the client side

1 Download DDT on your local machine from Linaro and make sure the versions matches the one on
Teach (23.0.2): https://www.linaroforge.com/downloadForge/

2 Launch ddt and select Configure from Remote Connections

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 46 / 55

https://www.linaroforge.com/downloadForge/

Client-server Mode Setup
3 Click Add and fill out the fields as shown below

Note: Remote Installation Directory can be found by running echo $MODULE_FORGE_PREFIX on Teach

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 47 / 55

Client-server Mode Setup
4 Click OK and now the DDT starting screen should look like this:

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 48 / 55

Client-server Mode Setup

5 If you have MFA enabled follow the instructions outlined in the text box:

More detailed instructions can be found here: https://docs.linaroforge.com/23.0.2/html/forge/forge/
connecting_to_a_remote_system/connecting_remotely.html

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 49 / 55

https://docs.linaroforge.com/23.0.2/html/forge/forge/connecting_to_a_remote_system/connecting_remotely.html
https://docs.linaroforge.com/23.0.2/html/forge/forge/connecting_to_a_remote_system/connecting_remotely.html

Editing and Compiling
DDT also has the ability to edit and recompile source code on-the-fly

Making it much easier to try potential bug fixes

Build demonstration

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 50 / 55

Attach to a Running Job
DDT allows you to attach to an already running job

For example, say you have submitted a job to the scheduler on Teach and want to monitor it

You can use the Attach button

More detailed instructions can be found here: https://docs.linaroforge.com/23.0.2/html/forge/ddt/
get_started_ddt/attaching_to_running_programs.html#index-9

Attach demonstration
James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 51 / 55

https://docs.linaroforge.com/23.0.2/html/forge/ddt/get_started_ddt/attaching_to_running_programs.html#index-9
https://docs.linaroforge.com/23.0.2/html/forge/ddt/get_started_ddt/attaching_to_running_programs.html#index-9

Submit SLURM Jobs
DDT allows you to submit jobs directly to the SLURM scheduler on Teach

The job will be monitored in the queue and as soon as it runs DDT will attach to the job

Setup

Click Run -> Submit to Queue -> Configure

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 52 / 55

Running .core Files

When your code terminates unexpectedly it will generate what is known as a core dump

A core dump is a set of files ending in .core per process running

Each .core file contains the process’s address space (memory) at the time of the crash

DDT allows you to run with the core files showing the state of the code at the time of the crash

Can be useful if your job fails after running for a long time

If no core dump is generated check that ulimit -c is set to unlimited, this sets the maximum
size a .core file can be

Demonstration

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 53 / 55

Summary

DDT is a powerful graphical debugger

Supports parallel debugging in multiple languages (e.g. C, C++, Fortran, Python)

Supports MPI, OpenMP, threads, CUDA and more

DDT documentation: https://docs.linaroforge.com/23.0.2/html/forge/ddt/index.html

Support

Questions? Need help?

Don’t be afraid to contact us! We are here to help.

Email to support@scinet.utoronto.ca or to niagara@computecanada.ca

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 54 / 55

https://docs.linaroforge.com/23.0.2/html/forge/ddt/index.html

References

Slide 19: Linaro DDT

Slide 38: Matrix-Matrix Multiply Worked Example

Slide 44: Client-Server Mode

Slide 51: Attach Mode

Slide 52: Submitting to a Queue

James Willis (SciNet) Parallel Debugging with DDT March 25, 2024 55 / 55

https://www.linaroforge.com/linaroDdt
https://docs.linaroforge.com/23.0.2/html/forge/worked_examples_appendix/mmult/algorithm.html
https://docs.linaroforge.com/23.0.2/html/forge/forge/connecting_to_a_remote_system/connecting_remotely.html
https://docs.linaroforge.com/23.0.2/html/forge/ddt/get_started_ddt/attaching_to_running_programs.html
https://docs.linaroforge.com/23.0.2/html/forge/ddt/get_started_ddt/starting_a_job_in_a_queue.html

