
WEB SCRAPING

IN PYTHON

Colloquium series

Yohai Meiron

2023 November 22

WHAT'S WEB SCRAPING?

Web scraping is the art of extracting data from websites

The basic steps are:

Programmatically retrieve URLs

Download each web page

Render dynamic content if needed

Parse the HTML

Store information in database

Repeat...

Web scraping at scale is a high-performance computing task, but normally the computing needs are modest

WHAT IS IT GOOD FOR?

Data harvesting can be used for research, commercial, and personal purposes

Statistical analysis

Machine learning

Creating alerts

Visualization

...

OUTLINE

In this seminar we will

discuss legal and ethical considerations

learn the basics of an HTML document

see how to retrieve and parse HTML in Python

try to bypass the website and get directly to the data source

render dynamic page content with Selenium

talk about bot detection avoidance

There is plenty of further learning material online!

LEGAL AND ETHICAL CONSIDERATIONS

⚠ Disclaimer ⚠ I am not a lawyer or an ethicist

IS IT LEGAL?

Scraping publicly available information is not against the law in Canada

The act may constitute a breach of the terms of service of a website

Publicly available material may still be under copyright

If the material violates PIPEDA or other laws, storing it may be illegal

IS IT ETHICAL?

It incurs cost to the website being scraped

Badly done scraping constitutes a denial of service attack

Bulk data may be offered for sale

Broader questions about training AI on publicly available material

For academics: consult your institution’s ethics board

INTRODUCTION TO THE WORLD WIDE WEB

By the year 1991

Computer networking has become quite mature

The Internet had many application such as

File transfer

E-mail

News and discussions

It was still missing an application for content sharing on demand

Then came the World Wide Web out of CERN

Hypertext Transfer Protocol (HTTP)

Hypertext Markup Language (HTML)

Hypertext refers to text documents interconnected by links

HTTP CRASH COURSE

TCP connection

client
running a browser

server
hosts website(s)

response

GET /something.html HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0

HTTP/1.1 200 OK

Server: Apache/2.4.58

Date: Wed, 22 Nov 2023 17:30:00 GMT

Content-type: text/html

Content-Length: 18439

Last-Modified: Wed, 22 Nov 2023 16:00:00 GMT

<!DOCTYPE html>

<html>

 <head>

...

Web browsers don’t do magic, a Python script can send requests and receive responses

(Reality in 2023 is more complicated, but the web still works on the principle of requests & responses)

HTML CRASH COURSE

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Simple HTML page</title>

 <link rel="stylesheet" href="styles.css">

 </head>

 <body>

 <h1>Header</h1>

 <p class="fancy centred">Text with a link</p>

 </body>

</html>

1

2

3

4

5

6

7

8

9

10

11

12

13

An HTML document comprises of multiple elements nested within the “root” <html> element

An element has a tag, and possibly attributes

Normal elements have start and end tags, and can have child elements

Some are void elements, they only have a start tag no children

<head> is the metadata element, while <body> is what is being rendered

id and class are especially important attributes

A�er loading the HTML page, the browser will make additional HTTP requests to the server for needed

resources (styles.css, logo.jpg, ...)

THE BASIC WEB SCRAPING TOOLS

Python is a great language for this task

The bottleneck is usually the network, so a “fast” language won’t do any better

Making HTTP requests using the requests package

httpx as an alternative

Parsing HTML responses using the BeautifulSoup package

selectolax, lxml as alternatives

Storing data anyway you like

SQLAlchemy is a good choice

For simplicity, we’ll just use print

Scrapy is a Python framework for web scraping

There are tonnes of commercial options including “coding free” ones

EXAMPLE 0

Scrape weather information from the following web site:

https://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=51459

Twist: data are easily available in CSV format

https://climate.weather.gc.ca/climate_data/daily_data_e.html?StationID=51459

EXAMPLE 1: STATIC WEB PAGE

Scrape book information from the following web site:

https://books.toscrape.com/index.html

https://books.toscrape.com/index.html

import requests

from bs4 import BeautifulSoup

from urllib.parse import urljoin

url = 'https://books.toscrape.com/index.html'

while True:

 response = requests.get(url)

 response.encoding = 'UTF-8'

 soup = BeautifulSoup(response.text, 'html.parser')

 article_list = soup.select('article')

 for article in article_list:

 title = article.select_one('h3 a')['title']

 price = float(article.select_one('p.price_color').text[1:])

 stars_number = article.select_one('p.star-rating')['class'][1]

 numbers = {'One': 1, 'Two': 2, 'Three': 3, 'Four': 4, 'Five': 5}

 stars = numbers[stars_number]

 print(f'"{title}",{price},{stars}')

 if next_link := soup.select_one('li.next a'):

 url = urljoin(url, next_link['href'])

 else: break

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

COMMENTS

Error handling is a must

Checkpoints when scraping massive amounts

books.toscrape.com is a scraping-friendly website

DYNAMIC CONTENT & JAVASCRIPT

JavaScript is a scripting language used for creating content dynamically by manipulating the DOM

<!DOCTYPE html>

<html>

 <body>

 <p id="content">Hello</p>

 <script>

 document.getElementById("content").innerHTML += ", world!";

 </script>

 </body>

</html>

1

2

3

4

5

6

7

8

9

When the page loads, it will initially show a paragraph with the text “Hello”

The browser will then execute the JavaScript instructions in the <script> element

That will modify the text to “Hello, world!”

Dynamic web content cannot be scraped like in the book store example

The requests Python package only retrieves the HTTP response (the HTML source code)

It cannot execute the JavaScript and render the page like a browser

The page may take some time to fully render if the script is complex

EXAMPLE 2: API REQUESTS

Scrape movie information from: http://www.scrapethissite.com/pages/ajax-javascript/

Here we essentially bypass the web page and go directly to the data source

import requests, json

url = 'https://www.scrapethissite.com/pages/ajax-javascript/?ajax=true&year={year}'

for year in range(2010, 2016):

 response = requests.get(url.format(year=year))

 data = json.loads(response.text)

 for movie in data:

 print('"{title}",{year},{awards},{nominations}'.format(**movie))

1

2

3

4

5

6

7

8

9

COMMENTS

This is hardly real web scraping

The “hard” part was figuring out the API access point

The data came to us in JSON format, which is much easier than HTML

In real situations, API requests may be refused unless a cookie (or another header) is provided

The cookie can be transplanted from a browser, but it may expire quickly

http://www.scrapethissite.com/pages/ajax-javascript/

EXAMPLE 3: DYNAMIC HTML CONTENT

Scrape book information from the following web site:

https://quotes.toscrape.com/js/

When we can’t get to the data source (or it’s not useful):

Selenium WebDriver can be used to control an actual web browser from Python

Meant for website testing primarily

That is much slower than retrieving using requests

Selenium alternatives: Puppeteer, Playwright

https://quotes.toscrape.com/js/

from selenium import webdriver

from selenium.webdriver.common.by import By

from bs4 import BeautifulSoup

url = 'https://quotes.toscrape.com/js/'

driver = webdriver.Firefox()

driver.get(url)

while True:

 rendered_html = driver.page_source

 soup = BeautifulSoup(rendered_html, 'html.parser')

 tag_list = soup.select('a.tag')

 for tag in tag_list:

 print(tag.text)

 try:

 next_link = driver.find_element(By.CSS_SELECTOR, 'li.next a')

 next_link.click()

 except: break

driver.quit()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

COMMENTS

We could get the “next” link like in the book store example

Rendering the page with JavaScript could take some time

Selenium has mechanisms to wait for an element to appear on the page

The browser can usually run in headless mode

BOT DETECTION & AVOIDANCE

Check the www.example.com/robots.txt file for site-specific rules

Try to appear more like a normal web browser by including a realistic user-agent header

Also rotate user-agents occasionally

Add a little bit of random sleep between requests

Rotate IPs using a proxy service

If Selenium is detected as a bot, you could

Tweak the web driver (hard)

Use Undetected ChromeDriver (easy, doesn't always work)

Captchas are difficult but not impossible to tackle

Solve the captcha yourself if you have time

Use a captcha solving service

