
Linux Shell Scripting

 2

Course audience
Audience: Linux users, programmers, and system administrators.

Prerrequisite: Basic knowledge of the Linux command line

➔ Students learn to read, write, and debug Linux shell scripts, thus increasing
productivity by taking full advantage of the bash shell.

➔ Linux Shell scripts, are the means by which a Linux shell is used as a
programming language. Linux commands and shell language control constructs
are entered into a file by the programmer, then the file is executed as a command
and interpreted just as if the commands had been typed on the shell command
line.

➔ Linux shell scripts provide a way to automate commonly executed groups of
commands – but shell scripts can do much more than this. Although many simple
tasks are automated with small scripts, large scripts hundreds of lines long are
very common.

 3

What is a shell?
● In computing, a shell is a user interface for access to an operating

system services. In general, operating system shells use either a
command-line interface (CLI) or graphical user interface (GUI),
depending on the computer's role and particular operation. It is named a
shell because it is the outermost layer around the operating system
kernel.

● A program that interprets commands.
● Allows a user to execute commands by typing them manually at a terminal, or

automatically in programs called shell scripts.
● A shell is not an operating system. It is a way to interface with the operating

system and run commands.
Alternate names: console, terminal, command line, command line interface,
command prompt

 4

Shell types
Just like people know different languages and dialects, your UNIX system will usually offer a variety of shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX−related environments. This is the
basic shell, a small program with few features. While this is not the standard shell anymore, it is still available on
every Linux system for compatibility with UNIX programs.

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable for beginning
users while being at the same time a powerful tool for the advanced and professional user. On Linux, bash is the
standard shell for common users. This shell is a so−called superset of the Bourne shell, a set of add−ons and
plug−ins. This means that the Bourne Again shell is compatible with the Bourne shell: commands that work in sh, also
work in bash. However, the reverse is not always the case. All examples and exercises in this course use bash.

csh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes asked for by
programmers.

tcsh or Turbo C shell: a superset of the common C shell, enhancing user−friendliness and speed.

ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the Bourne shell;
with standard configuration a nightmare for beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:

$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/tcsh
/bin/csh
/bin/zsh
/bin/ksh
/bin/rksh

 5

Shell types
Just like people know different languages and dialects, your UNIX system will usually offer a variety of shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX−related environments. This is the
basic shell, a small program with few features. While this is not the standard shell anymore, it is still available on
every Linux system for compatibility with UNIX programs.

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable for beginning
users while being at the same time a powerful tool for the advanced and professional user. On Linux, bash is the
standard shell for common users. This shell is a so−called superset of the Bourne shell, a set of add−ons and
plug−ins. This means that the Bourne Again shell is compatible with the Bourne shell: commands that work in sh, also
work in bash. However, the reverse is not always the case. All examples and exercises in this course use bash.

csh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes asked for by
programmers.

tcsh or Turbo C shell: a superset of the common C shell, enhancing user−friendliness and speed.

ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the Bourne shell;
with standard configuration a nightmare for beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:

$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/tcsh
/bin/csh
/bin/zsh
/bin/ksh
/bin/rksh

 6

What is a shell script?
A shell script is a computer program designed to be run by the Unix shell, a command-
line interpreter. The various dialects of shell scripts are considered to be scripting
languages. Typical operations performed by shell scripts include file manipulation,
program execution, and printing text. A script which sets up the environment, runs the
program, and does any necessary cleanup, logging, etc. is called a wrapper.
(Wikipedia)

Basically, is a text file containing
commands and their respective flags and
parameters, line by line, in the order that
we want them to be executed.

#!/bin/bash
My first script
command1 –flag parameter1
command2 –otherflag otherparameter
exit

https://en.wikipedia.org/wiki/Shell_script

 7

Starting Off With a Sha-Bang

A sha-bang is the character sequence consisting of the
characters number sign and exclamation mark (#!) at the
beginning of a script. It is also called shebang, hashbang,
pound-bang, or hash-pling.

The sha-bang (#!) at the head of a script tells your system
that this file is a set of commands to be fed to the command
interpreter indicated. Immediately following the sha-bang is a
path name. This is the path to the program that interprets the
commands in the script, whether it be a shell, a programming
language, or a utility. This command interpreter then executes
the commands in the script, starting at the top (the line
following the sha-bang line), and ignoring comments.

#!/bin/sh

#!/bin/bash

#!/usr/bin/perl

#!/usr/bin/tcl

#!/bin/sed -f

#!/bin/awk -f

#!/bin/expect

#!/usr/bin/python

 8

Starting Off With a Sha-Bang

The sha-bang is only mandatory for those scripts, which
shall be executed by the operating system in the same way
as binary executables. If you source in another script, then
the sha-bang is ignored.

The sha-bang is valid and read by the system ONLY from
the first line of the script. If there is another sha-bang in any
line below, it is treated as a comment.

#!/bin/sh

#!/bin/bash

#!/usr/bin/perl

#!/usr/bin/tcl

#!/bin/sed -f

#!/bin/awk -f

#!/bin/expect

#!/usr/bin/python

 9

My first script – Hello World!

Using your preferred text editor, (vi, emacs, nano) write the following lines:

#!/bin/bash
This is my first script
echo “Hello World!”
exit 0

Save it as “myfirst.sh”

You can name your script whatever you want. As a good practice, always name your
scripts in a descriptive manner so you know what the script does.

In the example above, we are appending “.sh” to the script name. There are no
extensions in Linux and the dot “.” character is just another valid character in the
name of the object, so the “.sh” is just there to remind us that this is a script, but it is
not mandatory. The name of the script could be just “myfirst” and it will work the
same way.

 10

Invoking the script

Having written the script, you can invoke it by

$ bash myfirst.sh

Much more convenient is to make the script itself directly executable with a chmod:

$ chmod +x myfirst.sh

The "sha-bang" line, invoking the script calls the correct command interpreter to run
it.

As a final step, after testing and debugging, you would likely want to move it to
/usr/local/bin (as root, of course), to make the script available to yourself and all
other users as a systemwide executable. The script could then be invoked by simply
typing myfirst.sh <ENTER> from the command-line.

 11

Special Characters

What makes a character special? If it has a meaning beyond its literal
meaning, a meta‑meaning, then we refer to it as a special character.
Along with commands and keywords, special characters are building
blocks of Bash scripts.

 12

Special Characters
Comments. Lines beginning with a #, or anything to the right of a #, are comments and will
not be executed:

This line is a comment.

Command separator [semicolon]. Permits putting two or more commands on the same line.

$ echo hello; echo there

A quoted or an escaped # in an echo statement does not begin a comment. Likewise, a # appears in
certain parameter-substitution constructs and in numerical constant expressions.

echo "The # here does not begin a comment.”

echo 'The # here does not begin a comment.’

echo The \# here does not begin a comment.

echo The # here begins a comment.

echo ${PATH#*:} # Parameter substitution, not a comment.

echo $((2#101011)) # Base conversion, not a comment.

 13

Special Characters

Command separator [semicolon]. Permits putting two or more
commands on the same line.

$ echo hello; echo there

Wild card [asterisk]. The * character serves as a "wild card" for
filename expansion in globing by itself, it matches every filename in a
given directory.

$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

 14

Special Characters

"dot" command [period]. Equivalent to source. This is a bash builtin.
"dot", as a component of a filename. When working with filenames, a
leading dot is the prefix of a "hidden" file, a file that an ls will not
normally show.

escape [backslash]. A quoting mechanism for single characters.
\X escapes the character X. This has the effect of "quoting" X,
equivalent to 'X'. The \ may be used to quote " and ', so they are
expressed literally.

 15

Variables and Parameters

Variables are how programming and scripting languages represent data. A
variable is nothing more than a label, a name assigned to a location or set of
locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and
in string parsing.

Unlike many other programming languages, Bash does not segregate its
variables by "type." Essentially, Bash variables are character strings, but,
depending on context, Bash permits arithmetic operations and comparisons
on variables. The determining factor is whether the value of a variable
contains only digits.

 16

Variable Substitution
The name of a variable is a placeholder for its value, the data it holds. Referencing
(retrieving) its value is called variable substitution.

Let us carefully distinguish between the name of a variable and its value. If variable1
is the name of a variable, then $variable1 is a reference to its value, the data item it
contains.

$ variable1=23
$ echo variable1
variable1
$ echo $variable1
23

The only times a variable appears "naked" -- without the $ prefix -- is when declared or
assigned, when unset, when exported, in an arithmetic expression within double
parentheses ((...)), or in the special case of a variable representing a signal.
Assignment may be with an = (as in var1=27), in a read statement, and at the head of a
loop (for var2 in 1 2 3).

 17

Special Variable Types
Local variables

Variables visible only within a code block or function (see also local variables in
functions)

Environmental variables

Variables that affect the behaviour of the shell and user interface.

Positional parameters

Arguments passed to the script from the command line: $0, $1, $2, $3 . . .

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the
third, and so forth. After $9, the arguments must be enclosed in brackets, for
example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

 18

Quoting
Quoting means just that, bracketing a string in quotes. This has the effect of
protecting special characters in the string from reinterpretation or expansion
by the shell or shell script. (A character is "special" if it has an interpretation
other than its literal meaning. For example, the asterisk * represents a wild
card character in globing and Regular Expressions).

Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in
double quotes. This prevents reinterpretation of all special characters within
the quoted string -- except $, ` (backquote), and \ (escape). Keeping $ as a
special character within double quotes permits referencing a quoted variable
("$variable"), that is, replacing the variable with its value.

 19

Exit and Exit Status

The exit command terminates a script, just as in a C program. It
can also return a value, which is available to the script's parent
process.

Every command returns an exit status (sometimes referred to as
a return status or exit code). A successful command returns a 0,
while an unsuccessful one returns a non-zero value that usually
can be interpreted as an error code. Well-behaved UNIX
commands, programs, and utilities return a 0 exit code upon
successful completion, though there are some exceptions.

 20

Tests

Every reasonably complete programming language can test for a condition,

then act according to the result of the test. Bash has the test command,

various bracket and parenthesis operators, and the if/then/else construct.

An if/then construct tests whether the exit status of a list of commands is 0

(since 0 means "success" by UNIX convention), and if so, executes one or

more commands.

 21

Tests

There exists a dedicated command called [(left bracket special character).
It is a synonym for test, and a builtin for efficiency reasons. This command
considers its arguments as comparison expressions or file tests and returns
an exit status corresponding to the result of the comparison (0 for true, 1 for
false).

With version 2.02, Bash introduced the [[...]] extended test command,
which performs comparisons in a manner more familiar to programmers
from other languages. Note that [[is a keyword, not a command.

Bash sees [[$a -lt $b]] as a single element, which returns an exit status.

The ((...)) and let ... constructs return an exit status, according to whether
the arithmetic expressions they evaluate expand to a non-zero value. These
arithmetic-expansion constructs may therefore be used to perform
arithmetic comparisons.

 22

File test operators

-e file exists
-a file exists
-f file is a regular file (not a directory or device file or a

symbolic link)
-s file is not zero size
-d file is a directory
-b file is a block device

-c file is a character device
-p file is a pipe
-h file is a symbolic link
-L file is a symbolic link
-S file is a socket
-t file (descriptor) is associated with a terminal device
-r file has read permission (for the user running the

test)

-w file has write permission (for the user running the test)

-x file has execute permission (for the user running the
test)

-g set-group-id (sgid) flag set on file or directory

-u set-user-id (suid) flag set on file

-k sticky bit set

-O you are owner of file

-G group-id of file same as yours

-N file modified since it was last read

f1 -nt f2 file f1 is newer than f2

f1 -ot f2 file f1 is older than f2

f1 -ef f2 files f1 and f2 are hard links to the same file

! "not" -- reverses the sense of the tests above (returns true if
condition absent)

Returns true if...

 23

Other Comparison Operators
Integer comparison

-eq is equal to
if ["$a" -eq "$b"]

-ne is not equal to
if ["$a" -ne "$b"]

-gt is greater than
if ["$a" -gt "$b"]

-ge is greater than or equal to
if ["$a" -ge "$b"]

-lt is less than
if ["$a" -lt "$b"]

-le is less than or equal to
if ["$a" -le "$b"]

< is less than (within double
parentheses)
(("$a" < "$b"))

<= is less than or equal to (within
double parentheses)
(("$a" <= "$b"))

> is greater than (within double
parentheses)(("$a" > "$b"))

>= is greater than or equal to (within
double parentheses)
(("$a" >= "$b"))

 24

Other Comparison Operators
String comparison

= is equal to
if ["$a" = "$b"]
Note the whitespace framing the =
if ["$a"="$b"] is not equivalent to the
above.

== is equal to
if ["$a" == "$b"]
This is a synonym for =

!= is not equal to
if ["$a" != "$b"]

< is less than, in ASCII alphabetical order
if [["$a" < "$b"]]
if ["$a" \< "$b"]
Note that the "<" needs to be escaped
within a [] construct.

> is greater than, in ASCII alphabetical order
if [["$a" > "$b"]]
if ["$a" \> "$b"]
Note that the ">" needs to be escaped
within a [] construct.

-z string is null, that is, has zero length

-n string is not null.

Compound comparison

-a logical and
exp1 -a exp2 returns true if both exp1
and exp2 are true.

-o logical or
exp1 -o exp2 returns true if either exp1
or exp2 is true.

These are similar to the Bash comparison operators
&& and ||, used within double brackets.

 25

Operators
Assignment

variable assignment

Initializing or changing the value of
a variable

=

All-purpose assignment operator,
which works for both arithmetic
and string assignments.

Do not confuse the "=" assignment
operator with the = test operator.

Arithmetic operators

+ plus

- Minus

* multiplication

/ division

** exponentiation

% modulo, or mod (returns the
remainder of an integer
division operation)

 26

Operators

Logical (boolean) operators

! NOT
&& AND
|| OR

Bitwise operators

<< bitwise left shift (multiplies by 2 for each shift
position)

<<= left-shift-equal
let "var <<= 2" results in var left-shifted 2 bits
(multiplied by 4)

>> bitwise right shift (divides by 2 for each shift
position)

>>= right-shift-equal (inverse of <<=)

& bitwise AND

&= bitwise AND-equal

| bitwise OR

|= bitwise OR-equal

~ bitwise NOT

^ bitwise XOR

^= bitwise XOR-equal

 27

Arithmetic Expansion

Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in
scripts. Translating a string into a numerical expression is relatively straightforward using
backticks, double parentheses, or let.

Arithmetic expansion with backticks (often used in conjunction with expr):

z=`expr $z + 3` # The 'expr' command performs the expansion.

Arithmetic expansion with double parentheses, and using let:

The use of backticks (backquotes) in arithmetic expansion has been superseded by double
parentheses -- ((...)) and $((...)) -- and also by the very convenient let construction.

z=$(($z+3))

z=$((z+3))

let z=z+3

 28

Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a

special prefix or notation. A number preceded by a 0 is octal (base 8). A number

preceded by 0x is hexadecimal (base 16). A number with an embedded # evaluates as

BASE#NUMBER (with range and notational restrictions).

 29

Here Documents
A here document is a special-purpose code block. It uses a form of I/O redirection to
feed a command list to an interactive program or a command, such as ftp, cat, or the
ex text editor.

COMMAND <<InputComesFromHERE ...
...
...
InputComesFromHERE

A limit string delineates (frames) the command list. The special symbol << precedes
the limit string. This has the effect of redirecting the output of a command block into
the stdin of the program or command. It is similar to interactive-program <
command‑file, where command-file contains

interactive-program <<LimitString
command #1
command #2
...
LimitString

 30

Here Documents
Example. broadcast: Sends message to everyone logged in

#!/bin/bash

wall <<zzz23EndOfMessagezzz23
E-mail your noontime orders for pizza to the system administrator.
 (Add an extra dollar for anchovy or mushroom topping.)
Additional message text goes here.
Note: 'wall' prints comment lines.
zzz23EndOfMessagezzz23

Could have been done more efficiently by
wall <message-file
However, embedding the message template in a script
#+ is a quick-and-dirty one-off solution.

exit

 31

Loops and Branches
for loops

for arg in [list]

This is the basic looping construct.

for arg in [list]

do

commands....

done

While loops

while

This construct tests for a condition at the top
of a loop, and keeps looping as long as that
condition is true (returns a 0 exit status). In
contrast to a for loop, a while loop finds use
in situations where the number of loop
repetitions is not known beforehand.

while [condition]

do

commands....

done

The bracket construct in a while loop is nothing
more than our old friend, the test brackets.

 32

Loops and Branches
Until loops

Until

This construct tests for a condition at the top of
a loop, and keeps looping as long as that
condition is false (opposite of while loop).

–

until [condition-is-true]

do

commands....

done

–

Note that an until loop tests for the terminating
condition at the top of the loop, differing from a similar
construct in some programming languages.

 33

Testing and Branching
Controlling program flow in a code block

case (in) / esac

The case construct is the shell scripting analog to switch in C/C++. It permits
branching to one of a number of code blocks, depending on condition tests. It serves
as a kind of shorthand for multiple if/then/else statements and is an appropriate tool for
creating menus.

case "$variable" in
"$condition1") command...
;;
"$condition2") command...
;;
esac

 34

Test Constructs

● An if/then/esle construct tests whether the exit status of a list of

commands is 0 (since 0 means "success" by UNIX convention), and if

so, executes one or more commands.

● There exists a dedicated command called [(left bracket special

character). It is a synonym for test, and a builtin for efficiency reasons.

This command considers its arguments as comparison expressions or

file tests and returns an exit status corresponding to the result of the

comparison (0 for true, 1 for false).

 35

Test Constructs
● Bash has the [[...]] extended test command, which performs

comparisons in a manner more familiar to programmers from other
languages. Note that [[is a keyword, not a command.

● Bash sees [[$a -lt $b]] as a single element, which returns an exit
status.

● The ((...)) and let ... constructs return an exit status, according to
whether the arithmetic expressions they evaluate expand to a non-
zero value. These arithmetic-expansion constructs may therefore be
used to perform arithmetic comparisons.

 36

Test Constructs
if/then/else

This is the way to construct an if/then/else test:

if [condition-true] then
command 1
command 2 ...
else
command 3 command 4 ...
fi

● An if can test any command, not just conditions enclosed within brackets.

if cmp a b &> /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."
fi

 37

Test Constructs
else if and elif

Elif

elif is a contraction for ‘else if’. The effect is to nest an inner if/then construct
within an outer one.

if [condition1]
then
 command1
 command2
 command3
elif [condition2]
then
 command4
 command5
else
default-command
fi

 38

Functions
Like "real" programming languages, Bash has functions. A function is a subroutine, a
code block that implements a set of operations, a "black box" that performs a specified task.
Wherever there is repetitive code, when a task repeats with only slight variations in
procedure, then consider using a function.

function function_name {

commands...
}

or

function_name () {

commands...
}

This second form will cheer the hearts of C programmers (and is more portable). As in C, the
function's opening bracket may optionally appear on the second line.

 39

Functions
● The commands between the curly braces ({}) are called the body of the

function. The curly braces must be separated from the body by spaces or
newlines.

● Defining a function doesn’t execute it. To invoke a bash function, simply use
the function name. Commands between the curly braces are executed
whenever the function is called in the shell script.

● The function definition must be placed before any calls to the function.

● When using single line “compacted” functions, a semicolon ; must follow the
last command in the function.

● Always try to keep your function names descriptive

 40

Functions
calling a function:

A function must exist before it is called:

#!/bin/bash
hello_world () {
 echo 'hello, world'
}
hello_world

Let’s analyze the code line by line:

● In line 2, we are defining the function by giving it a name. The curly brace { marks the start of the
function’s body.

● Line 3 is the function body. The function body can contain multiple commands, statements and variable
declarations.

● Line 4, the closing curly bracket }, defines the end of the hello_world function.

● In line 5 we are executing the function. You can execute the function as many times as you need.

If you run the script, it will print hello, world.

 41

Functions
You can pass parameters to a function:

● To pass any number of arguments to the bash function simply put them right after the function’s name, separated
by a space. It is a good practice to double-quote the arguments to avoid the misparsing of an argument with
spaces in it.

● The passed parameters are $1, $2, $3 … $n, corresponding to the position of the parameter after the function’s
name.

● The $0 variable is reserved for the function’s name.
● The $# variable holds the number of positional parameters/arguments passed to the function.
● The $* and $@ variables hold all positional parameters/arguments passed to the function.

● When double-quoted, "$*" expands to a single string separated by space (the first character of IFS) - "$1
$2 $n".

● When double-quoted, "$@" expands to separate strings - "$1" "$2" "$n".
● When not double-quoted, $* and $@ are the same.

Here is an example:

#!/bin/bash
greeting () {
 echo "Hello $1"
}
greeting "Joe"

 42

Functions
Return Values

Unlike functions in “real” programming languages, Bash functions don’t allow you to return a value
when called. When a bash function completes, its return value is the status of the last statement
executed in the function, 0 for success and non-zero decimal number in the 1 - 255 range for
failure.

The return status can be specified by using the return keyword, and it is assigned to the variable
$?. The return statement terminates the function. You can think of it as the function’s exit status .

#!/bin/bash
my_function () {
 echo "some result"
 return 55
}
my_function
echo $?

 43

Arrays
Bash support one-dimensional arrays. Array elements may be initialized with the
variable[xx] notation. Alternatively, a script may introduce the entire array by an
explicit declare -a variable statement. To dereference (retrieve the contents of) an
array element, use curly bracket notation, that is, ${element[xx]}.

Any variable may be used as an indexed array; the declare builtin will explicitly
declare an array. There is no maximum limit on the size of an array, nor any
requirement that members be indexed or assigned contiguously. Indexed arrays are
referenced using integers (including arithmetic expressions) and are zero-based;
associative arrays are referenced using arbitrary strings. Unless otherwise noted,
indexed array indices must be non-negative integers.

An indexed array is created automatically if any variable is assigned to using the
syntax name[subscript]=value. The subscript is treated as an arithmetic expression
that must evaluate to a number. To explicitly declare an indexed array, use declare -a
name. declare -a name[subscript] is also accepted; the subscript is ignored.

 44

sed and awk

This is a very brief introduction to the sed and awk text processing
utilities. We will deal with only a few basic commands here, but that
will suffice for understanding simple sed and awk constructs within
shell scripts.

sed: a non-interactive text file editor

awk: a field-oriented pattern processing language with a C-style
syntax

For all their differences, the two utilities share a similar invocation
syntax, use regular expressions, read input by default from stdin, and
output to stdout. These are well‑behaved UNIX tools, and they work
together well. The output from one can be piped to the other, and their
combined capabilities give shell scripts some of the power of Perl.

 45

sed

sed is a non-interactive stream editor. It receives text input, whether from
stdin or from a file, performs certain operations on specified lines of the
input, one line at a time, then outputs the result to stdout or to a file.
Within a shell script, sed is usually one of several tool components in a
pipe.

sed determines which lines of its input that it will operate on from the
address range passed to it. Specify this address range either by line
number or by a pattern to match. For example, 3d signals sed to delete
line 3 of the input, and /Windows/d tells sed that you want every line of
the input containing a match to "Windows" deleted.

Of all the operations in the sed toolkit, we will focus primarily on the three
most commonly used ones. These are printing (to stdout), deletion, and
substitution.

 46

sed

Operator Name Effect

[address-range]/p print Print [specified address range]
[address-range]/d delete Delete [specified address range]

s/pattern1/pattern2/ substitute

[address-range]/s/pattern1/pattern2/ substitute

[address-range]/y/pattern1/pattern2/ transform

[address] i pattern Filename insert

g global

Substitute pattern2 for first
instance of pattern1 in a line
Substitute pattern2 for first
instance of pattern1 in a line, over
address-range
replace any character in pattern1
with the corresponding character in
pattern2, over address-range
(equivalent of tr)
Insert pattern at address indicated
in file Filename. Usually used with -
i in-place option.
Operate on every pattern match within
each matched line of input

 47

sed -e '/^$/d' $filename

The -e option causes the next string to be interpreted as an editing
instruction.

(If passing only a single instruction to sed, the "-e" is optional.)

The "strong" quotes ('') protect the RE characters in the instruction

#+ from reinterpretation as special characters by the body of the
script.

(This reserves RE expansion of the instruction for sed.)

#

Operates on the text contained in file $filename.

sed

 48

awk

awk is a full-featured text processing language with a syntax
reminiscent of C. While it possesses an extensive set of operators and
capabilities, we will cover only a few of these here - the ones most
useful in shell scripts.

awk breaks each line of input passed to it into fields. By default, a field
is a string of consecutive characters delimited by whitespace, though
there are options for changing this. awk parses and operates on each
separate field. This makes it ideal for handling structured text files --
especially tables -- data organized into consistent chunks, such as
rows and columns.

 49

awk
$1 is field #1, $2 is field #2, etc.

echo one two | awk '{print $1}'
one

echo one two | awk '{print $2}'
two
But what is field #0 ($0)?
echo one two | awk '{print $0}'
one two
All the fields!

awk '{print $3}' $filename
Prints field #3 of file $filename to stdout.

awk '{print $1 $5 $6}' $filename
Prints fields #1, #5, and #6 of file $filename.

awk '{print $0}' $filename
Prints the entire file!
Same effect as: cat $filename . . . or . . . sed '' $filename

 50

Cron jobs
The software utility cron also known as cron job is a time-based job scheduler in
Unix-like computer operating systems. Users that set up and maintain software
environments use cron to schedule jobs (commands or shell scripts) to run
periodically at fixed times, dates, or intervals. It typically automates system
maintenance or administration—though its general-purpose nature makes it useful for
things like downloading files from the Internet and downloading email at regular
intervals. The origin of the name cron is from the Greek word for time, χρόνος
(chronos).(Wikipedia)

The typical format of a cron job is:

https://en.wikipedia.org/wiki/Cron

 51

Cron jobs
To display the contents of the crontab file of the currently logged in user:

$ crontab -l

To edit the current user's cron jobs, do:

$ crontab -e

Let us see some examples.

1. To run a cron job at every minute, the format should be like below.

* * * * * <command-to-execute>

2. To run cron job at every 5th minute, add the following in your crontab file.

*/5 * * * * <command-to-execute>

 52

Cron jobs
More examples.

3. To run a cron job at every hour on the hour, the format should be like below.

0 * * * * <command-to-execute>

4. To run cron job at every Friday at midnight, add the following in your crontab file.

0 0 * * Saturday <command-to-execute>

5. To run cron job at every weekday at 6:15 pm, add the following in your crontab file.

15 18 * * mon-fri <command-to-execute>
or

15 18 * * 2-6 <command-to-execute>

 53

Assignment

Write a script to do a backup of your $HOME directory.

The name of the backup file should be something like backup-<date>.tar.gz

The backup file is to be written to your $SCRATCH directory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

