
James Willis (SciNet)
Compute Ontario Colloquium

October 25, 2023

Gas Density Temperature Dark Matter Shocks Metallicity

SWIFT: A Modern Highly-parallel Gravity and Smoothed
Particle Hydrodynamics Solver for Astrophysical and

Cosmological Applications

SPH With Interleaved Fine-grained Tasking

Overview

● Motivation
● Problem to solve
● Solution using SPH
● SWIFT implementation using Task-Based Parallelism
● Verlet lists for particle interactions
● Optimising particle timesteps
● Load balancing

Context:
Cosmological simulations

http://www.youtube.com/watch?v=7KmbQ02JE3g

Simulating a Universe

Initial conditions:

- Known from CMB observations.

Boundary conditions:

- Assume periodic boundaries

Forces (physics):

- Gravity, hydrodynamics, magnetic
fields (?), radiative transfer (?),
cosmic rays (?), ...

Constituents:

- Dark energy: Absorbed in the choice
of coordinates.

- Dark matter: Treated as bodies
acting gravitationally.

- Normal matter: Treated as an ideal
(compressible) gas.

- Others (stars, black holes, neutrinos,
dust, planets, …): Sub-grid models.

“easy”

“very hard”

Astro-SPH

Astro-SPH: The basics

● Particles have a fixed mass.

● Density is defined by the (weighted)
number of particles in a close
neighbourhood.

● Particles loop over their neighbours
to compute quantities via a
weighting function W(r, h).

Borrow, MS, +2021
Typical case: 50-100 neighbours

Astro-SPH: The traditional method

● TREESPH (Hernquist & Katz
1989)

● Neighbour search based on
oct-tree.

● Technique used a lot:
Gadget-[234], Gasoline-[12],
PHANTOM, ...

This makes sense. Easy, robust, and parallelisable.

Astro-SPH: The SWIFT way

● Target ~500 particles per cell
via adaptive mesh refinement.

● Cell size naturally matches
particle neighbour search
radius.

● Particles only interact with
particles in the same cell or any
direct neighbouring cell.

Astro-SPH: The SWIFT way

● Cells pairs do not need to
be processed in any
pre-defined order.

● Only need to make sure two
threads do not work on the
same cell.

● Cell pairs can have vastly
different work-loads.

→ Need runtime dynamic scheduling

Task-based parallelism

11

● Shared-memory parallel programming paradigm in which the computation is formulated in an
implicitly parallelizable way that automatically avoids most of the problems associated with
concurrency and load-balancing.

● We first reduce the problem to a
set of inter-dependent tasks.

● For each task, we need to know:
○ Which tasks it depends on,
○ Which tasks it conflicts with.

● Each thread then picks up a task which has no unresolved dependencies or conflicts and
computes it.

● We use our own Open-source library QuickSched (arXiv:1601.05384)

http://arxiv.org/abs/1601.05384

Task-based parallelism for SPH

“ Loop 1 “ “ Loop 2 “

“ Correction loop “
Time integration

“ Move “

What happens to one cell “bundle” of particles during one time-step:

All the code within a task is very simple. No need for deep C knowledge
—> Easy to extend the code

With all the physics

Task-based parallelism in action

● Instead of sending all the
particles and then compute, do
it at the same time.

● Sending/receiving data is just
another task type, and can be
executed in parallel with the
rest of the computation.

● Once the data has arrived, the
scheduler unlocks the tasks
that needed the data.

How about multiple nodes?

Weak-scaling to large systems

DiRAC Cosma-8 system @ Durham.

360 nodes with
 - 2x AMD 7H12
 - 1 TB of RAM
 - HDR Inter-connect

One trillion particles
Cosma-8 with 8 MPI ranks / node

Rogers+2022

Verlet list detail

Particle Interactions

pseudo-Verlet lists

Willis, MS, +2018

Local Δt “fun”

Localized time-stepping

Borrow, MS, +2018

Time integration

Classic leapfrog (Velocity Verlet):

K(𝚫t/2) × D(𝚫t) × K(𝚫t/2)

Where each particle has the same timestep, i.e. the smallest 𝚫t in the simulation

Efficiency

Time integration operator splitting

Classic leapfrog (Velocity Verlet):

K(𝚫t/2) × D(𝚫t) × K(𝚫t/2)

Splitting the “drift”:

K(𝚫t/2) × D(𝚫t/2n) ⋯ D(𝚫t/2n) × K(𝚫t/2)
Potter+2017

More implementation problems...

Localized time-stepping is great. But…

Need to select particles to update, or maintain lists,
or sort, ...

→ Proportionally, more “logic” and less “compute”.

Efficiency

Going beyond

The canonical algorithm drifts all the particles to the current point in time.

Do we need that? No! Only the particles that are neighbours of an active
particle need to be moved forward.

-> Tree-walk “activating” the tasks in parts of the domain that need to.
Followed by the actual calculation.

Efficiency

Not enough stuff to do

How do we load-balance this efficiently?

“How do you update ~10 particles
efficiently on 1000+ nodes?”

A Graph-based strategy

● For each task, we compute the amount
of work (=runtime) required.

● We build a graph where the data are
nodes and tasks are hyper-edges.

● Extra cost added for communication
tasks to minimise them.

● METIS is used to split the graph such
that the work (not the data!) is
balanced.

Metis Domain Decomposition

A diagnostic

400 × 106 particles

4 nodes

16 cores/node

i/o

Two strategies

hdf5-based snapshots.

- Exploits MPI-io under the hood.

- Compression (lossy and lossless)

- Achieves ~30% of peak on cosma’s
lustre system
(when not compressing).

Continuous Simulation Data Stream

- Write particle changes to a
per-node log file.

- Takes place as a task.

- Use memory-mapped files and the
OS lazily writes to disk in the
background.

Hausamman, MS, +2022

Planetary Impacts

J. A. Kegerreis et al 2022 ApJL 937 L40

http://www.youtube.com/watch?v=AQmeomxvokM

Final words

References

● Website: www.swiftsim.com
● Paper: https://ui.adsabs.harvard.edu/abs/2023arXiv230513380S/abstract
● Source code: https://github.com/SWIFTSIM/SWIFT

http://www.swiftsim.com
https://ui.adsabs.harvard.edu/abs/2023arXiv230513380S/abstract
https://github.com/SWIFTSIM/SWIFT

