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Gas Density Temperature Dark Matter Shocks Metallicity

SWIFT: A Modern Highly-parallel Gravity and Smoothed 
Particle Hydrodynamics Solver for Astrophysical and 

Cosmological Applications

SPH With Interleaved Fine-grained Tasking



Overview

● Motivation
● Problem to solve
● Solution using SPH
● SWIFT implementation using Task-Based Parallelism
● Verlet lists for particle interactions
● Optimising particle timesteps
● Load balancing



Context: 
Cosmological simulations



http://www.youtube.com/watch?v=7KmbQ02JE3g


Simulating a Universe

Initial conditions:

- Known from CMB observations.

Boundary conditions:

- Assume periodic boundaries 

Forces (physics):

- Gravity, hydrodynamics, magnetic 
fields (?), radiative transfer (?), 
cosmic rays (?), ...

Constituents:

- Dark energy: Absorbed in the choice 
of coordinates.

- Dark matter: Treated as bodies 
acting gravitationally.

- Normal matter: Treated as an ideal 
(compressible) gas.

- Others (stars, black holes, neutrinos, 
dust,  planets, …): Sub-grid models.

“easy”

“very hard”



Astro-SPH



Astro-SPH: The basics

● Particles have a fixed mass. 

● Density is defined by the (weighted) 
number of particles in a close 
neighbourhood.

● Particles loop over their neighbours 
to compute quantities via a 
weighting function W(r, h).

Borrow, MS, +2021
Typical case: 50-100 neighbours



Astro-SPH: The traditional method

● TREESPH (Hernquist & Katz 
1989)

● Neighbour search based on 
oct-tree.

● Technique used a lot: 
Gadget-[234], Gasoline-[12], 
PHANTOM, ...

This makes sense. Easy, robust, and parallelisable.



Astro-SPH: The SWIFT way

● Target ~500 particles per cell 
via adaptive mesh refinement.

● Cell size naturally matches 
particle neighbour search 
radius.

● Particles only interact with 
particles in the same cell or any 
direct neighbouring cell.



Astro-SPH: The SWIFT way

● Cells pairs do not need to 
be processed in any 
pre-defined order.

● Only need to make sure two 
threads do not work on the 
same cell.

● Cell pairs can have vastly 
different work-loads.

→ Need runtime dynamic scheduling



Task-based parallelism

11

● Shared-memory parallel programming paradigm in which the computation is formulated in an 
implicitly parallelizable way that automatically avoids most of the problems associated with 
concurrency and load-balancing.

● We first reduce the problem to a 
set of inter-dependent tasks.

● For each task, we need to know:
○ Which tasks it depends on,
○ Which tasks it conflicts with.

● Each thread then picks up a task which has no unresolved dependencies or conflicts and 
computes it.

● We use our own Open-source library QuickSched (arXiv:1601.05384 )

http://arxiv.org/abs/1601.05384


Task-based parallelism for SPH

“ Loop 1 “ “ Loop 2 “

“ Correction loop “
Time integration

“ Move “

What happens to one cell “bundle” of particles during one time-step:

All the code within a task is very simple. No need for deep C knowledge 
—> Easy to extend the code 



With all the physics



Task-based parallelism in action



● Instead of sending all the 
particles and then compute, do 
it at the same time.

● Sending/receiving data is just 
another task type, and can be 
executed in parallel with the 
rest of the computation.

● Once the data has arrived, the 
scheduler unlocks the tasks 
that needed the data.

How about multiple nodes?





Weak-scaling to large systems

DiRAC Cosma-8 system @ Durham.

360 nodes with
 - 2x AMD 7H12
 - 1 TB of RAM
 - HDR Inter-connect

One trillion particles
Cosma-8 with 8 MPI ranks / node

Rogers+2022



Verlet list detail



Particle Interactions



pseudo-Verlet lists

Willis, MS, +2018



Local Δt “fun”



Localized time-stepping

Borrow, MS, +2018



Time integration

Classic leapfrog (Velocity Verlet):  

K(𝚫t/2) × D(𝚫t) × K(𝚫t/2)

Where each particle has the same timestep, i.e. the smallest 𝚫t in the simulation



Efficiency



Time integration operator splitting

Classic leapfrog (Velocity Verlet):  

K(𝚫t/2) × D(𝚫t) × K(𝚫t/2)

Splitting the “drift”:

K(𝚫t/2) × D(𝚫t/2n) ⋯ D(𝚫t/2n) × K(𝚫t/2)
Potter+2017



More implementation problems...

Localized time-stepping is great. But…

Need to select particles to update, or maintain lists, 
or sort, ...

→ Proportionally, more “logic” and less “compute”.  



Efficiency



Going beyond

The canonical algorithm drifts all the particles to the current point in time.

Do we need that? No! Only the particles that are neighbours of an active 
particle need to be moved forward.

-> Tree-walk “activating” the tasks in parts of the domain that need to. 
Followed by the actual calculation.



Efficiency



Not enough stuff to do



How do we load-balance this efficiently?



“How do you update ~10 particles 
efficiently on 1000+ nodes?”



A Graph-based strategy

● For each task, we compute the amount 
of work (=runtime) required.

● We build a graph where the data are 
nodes and tasks are hyper-edges.

● Extra cost added for communication 
tasks to minimise them.

● METIS is used to split the graph such 
that the work (not the data!) is 
balanced.



Metis Domain Decomposition



A diagnostic

400 × 106 particles

4 nodes

16 cores/node



i/o



Two strategies

hdf5-based snapshots.

- Exploits MPI-io under the hood.

- Compression (lossy and lossless)

- Achieves ~30% of peak on cosma’s 
lustre system 
(when not compressing).

Continuous Simulation Data Stream

- Write particle changes to a 
per-node log file.

- Takes place as a task.

- Use memory-mapped files and the 
OS lazily writes to disk in the 
background.

Hausamman, MS, +2022



Planetary Impacts

J. A. Kegerreis et al 2022 ApJL 937 L40



http://www.youtube.com/watch?v=AQmeomxvokM


Final words
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