
Making Use of SIMD Vectorisation to Improve Code
Performance

Compute Ontario Colloquium

James Willis (SciNet)

February 15, 2023

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 1 / 29

Outline

Motivation

What is Vectorisation?

Addition Example

Vectorisation Pitfalls

Analysis Tools

Vector Intrinsics

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 2 / 29

End of Moore’s Law

CPU clock rates peaking

No. of cores per chip increasing

New AMD EPYC Bergamo CPU can have up
to 128 cores!

Need to parallelise applications to get
anywhere near peak theoretical performance

We also need to make use of SIMD vector
units inside CPUs

Vector units can give up to 8x (AVX/AVX2)
or 16x (AVX512) speed-up improvements to
code!

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 3 / 29

What is SIMD Vectorisation?

SIMD: Single Instruction Multiple Data

Allows us to perform one operation (add/substract/multiply/divide etc.) on multiple data at the
same time

So what would previously involve 8 separate scalar instructions on the CPU, can now be done with 1
AVX vector instruction

Resulting in a 8x speed increase

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 4 / 29

What is SIMD Vectorisation?

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 5 / 29

Vector Lengths

Vector lengths are set by the size of the
vector registers on the CPU:

I 128-bit register SSE instructions (xmm)
I 256-bit register AVX/AVX2 instructions

(ymm)
I 512-bit register AVX512 instructions (zmm)

For example a 512-bit register can perform
operations on either:

I 16x 32-bit numbers, e.g. floats; or
I 8x 64-bit numbers, e.g. doubles

Lets look at a simple example adding two arrays together

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 6 / 29

Addition Example

Imagine we want to add two float (32-bit)
arrays a and b and store the result in c

Declare arrays with the same size as the
vector length, 4 in the case of SSE (4x 32-bit)

Initialise with values

Add elements a and b and store result in c

add.c

#define VEC_LENGTH 4

float a[VEC_LENGTH], b[VEC_LENGTH],
c[VEC_LENGTH];

for(int i=0; i<VEC_LENGTH; i++) {
a[i] = i;
b[i] = i + 1;

}

for(int i=0; i<VEC_LENGTH; i++) {
c[i] = a[i] + b[i];

}

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 7 / 29

Addition Example - Compilation

Auto-vectorisation is when a compiler unrolls a loop and generates vector instructions in its place

Specific flags are needed to perform auto-vectorisation

The code should also be compiled using the highest available instruction set on the CPU, -xHost
(ICC) or -march=native (GCC)

I Intel compiler vectorises at default optimisation -O2 or higher:
icc -O2 -xHost add.c

I GNU compiler vectorises at -O3 or with -ftree-vectorize:
gcc -O2 -march=native -ftree-vectorize add.c

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 8 / 29

Addition Example - Scalar vs Vector Execution

Scalar Vector

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 9 / 29

Vectorisation Pitfalls

Not all loops are suitable for vectorisation

Some loops may not vectorise efficiently

Others may not vectorise at all

Lets look at some of the main reasons behind this and how to remedy them

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 10 / 29

Loop Dependencies

The biggest reason why a loop won’t vectorise is a loop dependency

This happens when one iteration of a loop depends on another iteration

For example, look at this loop:
for(int i=1; i<count; i++) {

a[i] = a[i-1] + b[i];
}

a[i] depends on the result of the previous iteration a[i-1]

As we now know vectorisation performs 8 iterations in parallel there is no way for a[i-1] to be
known before the ith iteration

This is know as a read-after-write dependency, one variable is written in one iteration and read in a
subsequent iteration

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 11 / 29

Memory Access Patterns

Vectorisation is very sensitive to memory access patterns

There are 3 types of memory access:
I Unit stride
I Constant stride
I Random access

Lets look at each case

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 12 / 29

Memory Access Patterns - Unit Stride

Occurs when the data loaded is contiguous in
memory:
for(int i=0; i<count; i++) {

c[i] = a[i] + b[i];
}

Gives the best vectorisation performance

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 13 / 29

Memory Access Patterns - Constant Stride

Occurs when the data loaded has a fixed
offset in memory:
int offset = 3;
for(int i=0; i<count; i++) {

c[i] = a[offset * i] + b[i];
}

Lower vectorisation performance than unit
stride

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 14 / 29

Memory Access Patterns - Random Access

Occurs when the data is loaded from memory
randomly or in an unpredictable way:
for(int i=0; i<count; i++) {

c[i] = a[index[i]] + b[i];
}

Where the index array is populated at
runtime, meaning the compiler can’t optimise
the memory load

Poorest vectorisation performance of the 3
access patterns

Always try to avoid this access pattern

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 15 / 29

SoA vs AoS
Codes typically store their data in an
Array-Of-Structures (AoS):
struct pos {

float x; float y; float z;
}
struct pos part_pos[1000];

One way to improve memory access is to
make use of a data format called a
Structure-Of-Arrays (SoA):
struct pos {

float x[1000]; float y[1000];
float z[1000];

}
struct pos part_pos;

This converts the memory access from
constant stride to unit stride

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 16 / 29

Conditional Statements

If there is a branch in the loop:
for(int i=0; i<count; i++) {

if(i % 2 == 0) {
c[i] = a[i] + b[i];

}
}

Where every other element of a and b are added together

This may prevent the compiler from vectorising the loop

The compiler will attempt to vectorise using a logical mask

It will perform addition of all elements and mask the result to get the even-indexed elements

Even if the compiler succeeds in vectorising the loop it will be less efficient than a loop which does
not contain a branch

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 17 / 29

Data Alignment
Moving data to/from memory addresses which are aligned on specific byte boundaries is more
efficient than unaligned addresses

AVX512 instructions for example prefer data which is aligned on a 64-byte boundary

We can improve vectorisation performance by:
I Aligning data with the aligned(64) attribute and
I Giving a hint to the compiler with __assume_aligned(a, 64) in order to generate aligned load and

store instructions

float a[COUNT] __attribute__((aligned(64)));
float b[COUNT] __attribute__((aligned(64)));
float c[COUNT] __attribute__((aligned(64)));

__assume_aligned(a, 64); __assume_aligned(b, 64); __assume_aligned(c, 64);
for(int i=0; i<COUNT; i++) {

c[i] = a[i] + b[i];
}

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 18 / 29

Vectorisation Pragmas

The compiler will not vectorise a loop if it thinks:
I There is a data dependency; or
I The loop will be faster executing with scalar instructions vs vector instructions

You can override the compiler and force a loop to be vectorised with the use of a #pragma

If you are confident there are no vector dependencies use #pragma ivdep:
#pragma ivdep
for(int i=0; i<count; i++) {

Beware, if there is an actual dependency the result will be incorrect!

#pragma vector always tells the compiler to vectorise a loop if it has no dependencies and ignore
any cost metrics which may prevent vectorisation

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 19 / 29

Optimisation Report

There are tools which can aid in code vectorisation

Compilers have the ability to generate what is called an optimisation report

These reports will show the vectorisation eligibility and estimated vectorisation efficiency of
each loop

Add -qopt-report=5 to the compiler flag list for Intel and -fopt-info-vec-all=gcc.optrpt for
GNU

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 20 / 29

Optimisation Report - Intel
Generated with: icc -O2 -xHost add.c -qopt-report=5

LOOP BEGIN at add.c(7,3) inlined into add.c(22,3)
remark #15388: vectorization support: reference c[i] has aligned access [add.c(22,13)]
remark #15388: vectorization support: reference a[i] has aligned access [add.c(22,7)]
remark #15388: vectorization support: reference b[i] has aligned access [add.c(22,10)]
remark #15305: vectorization support: vector length 8
remark #15427: loop was completely unrolled
remark #15399: vectorization support: unroll factor set to 10
remark #15300: LOOP WAS VECTORIZED
remark #26013: Compiler has chosen to target XMM/YMM vector.

Try using -qopt-zmm-usage=high to override
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 6
remark #15477: vector cost: 0.620
remark #15478: estimated potential speedup: 9.600
remark #15488: --- end vector cost summary ---

LOOP END

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 21 / 29

Intel Advisor

Intel also provides an analysis tool called Intel Advisor

GUI interface which profiles code and records metrics on code performance

Great for analysing vectorisation efficiency of your code

Provides hints and tips on how to vectorise loops and improve vectorisation efficiency

Tutorial: www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 22 / 29

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html#discover-where-vectorization-will-pay-off

Intel Advisor

.
James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 23 / 29

Intel Advisor

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 24 / 29

Vector Intrinsics

Auto-vectorisation is the easiest form of
vectorisation with little to no code changes

However, it may not give the most optimal
performance

Vectorisation can also be achieved through
the use of intrinsics

Vector intrinsics operate on vector registers
directly in the source code

Lowers portability of code

Intel Intrinsics Guide:
www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

Addition example with intrinsics:

for(int i=0; i<COUNT; i+=VEC_LENGTH) {
// Load elements into vector registers
__m256 v_a = _mm256_load_ps(&a[i]);
__m256 v_b = _mm256_load_ps(&b[i]);

// Add vectors together
__m256 v_c = _mm256_add_ps(v_a, v_b);

// Store result in c
_mm256_store_ps(&c[i], v_c);

}

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 25 / 29

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Caveat

At longer instruction sets, specifically AVX512, the CPU may downclock if all cores are running

This is because these instructions draw more power from the CPU

Therefore the clock frequency will decrease to maintain the same power usage

For example the Intel Xeon Gold 5115 CPU’s frequency behaves as:

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 26 / 29

Caveat

Take this into account when deciding which vector instruction set to use

Benchmark your code with AVX/AVX2 and compare the results against AVX512

To compile with a specific vector instruction set with the Intel compiler use:
I -xAVX (AVX)
I -xCORE-AVX2 (AVX2)
I -xCORE-AVX512 (AVX512)

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 27 / 29

Summary

Vectorisation can lead to 16x improvement in peformance

Compilers auto-vectorise loops if no dependencies are present

Vectorisation efficiency can be increased by:
I Optimising memory access patterns
I Aligning data on a 64-byte boundary
I Making use of SoA instead of AoS

Code analysis tools such as Intel Advisor and optimisation reports

Good introduction to vectorisation:
https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-
performance-quantifi-755040.pdf

Please email any questions to: support@scinet.utoronto.ca

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 28 / 29

https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-performance-quantifi-755040.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-performance-quantifi-755040.pdf
support@scinet.utoronto.ca

References

Slide 3: www.karlrupp.net/2015/06

Slide 5: https://medium.com/pixelstab/the-simd-experience-data-parallelism-on-my-game-engine-
13711054ed6e

Slide 6: https://cvw.cac.cornell.edu/vector/hw_registers

Slide 9: https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-
performance-quantifi-755040.pdf

Slide 22:
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/
top/discover-where-vectorization-will-pay-off.html#discover-where-vectorization-will-pay-off

Slide 26: https://en.wikichip.org/wiki/intel/xeon_gold/5115

James Willis (SciNet) Making Use of SIMD Vectorisation to Improve Code Performance February 15, 2023 29 / 29

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data
https://medium.com/@pixelstab/the-simd-experience-data-parallelism-on-my-game-engine-13711054ed6e
https://medium.com/@pixelstab/the-simd-experience-data-parallelism-on-my-game-engine-13711054ed6e
https://cvw.cac.cornell.edu/vector/hw_registers
https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-performance-quantifi-755040.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-performance-quantifi-755040.pdf
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html#discover-where-vectorization-will-pay-off
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top/discover-where-vectorization-will-pay-off.html#discover-where-vectorization-will-pay-off
https://en.wikichip.org/wiki/intel/xeon_gold/5115

